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Note From the Editor

Since issue 42-121, published on May 15, 1995, The Telecommunications and

Data Acquisition Progress Report has been available electronically to all its readers

on the World Wide Web at http://tda.jpl.nasa.gov/progress_report. Printed copies

were also produced but, as the Editor's Note in that issue stated, the ultimate goal

was to publish solely in electronic form. Now that goal is close to being realized.

Beginning with issue 42-125, due to be published on May 15, 1996, The TDA

Progress Report will be published entirely electronically at the above-mentioned

URL. This issue and the next, 42-124, will be the last issues for which printed copies
are produced; as a convenience for readers who are currently on our distribution

list, however, we will distribute a hard copy of the table of contents for each issue.

Readers with questions or concerns regarding this change are welcome to contact
the editor.

iii



Preface

This quarterly publication provides archival reports on developments in programs

managed by JPL's Telecommunications and Mission Operations Directorate (TMOD),

which now includes the former Telecommunications and Data Acquisition (TDA) Office.

In space communications, radio navigation, radio science, and ground-based radio and

radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning,

supporting research and technology, implementation, and operations. Also included are

standards activity at JPL for space data and information systems and reimbursable

DSN work performed for other space agencies through NASA. The preceding work is

all performed for NASA's Office of Space Communications (OSC).

TMOD also performs work funded by other NASA program offices through and

with the cooperation of OSC. The first of these is the Orbital Debris Radar Program

funded by the Office of Space Systems Development. It exists at Goldstone only and

makes use of the planetary radar capability when the antennas are configured as science

instruments making direct observations of the planets, their satellites, and asteroids of

our solar system. The Office of Space Sciences funds the data reduction and science

analyses of data obtained by the Goldstone Solar System Radar. The antennas at all

three complexes are also configured for radio astronomy research and, as such, conduct

experiments funded by the National Science Foundation in the U.S. and other agencies
at the overseas complexes. These experiments are either in microwave spectroscopy or

very long baseline interferometry.

Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech
President's Fund that involve TMOD are included.

This and each succeeding issue of The Telecommunications and Data Acquisition

Prvgress Report will present material in some, but not necessarily all, of the aforemen-

tioned programs.

PRECEDING PAGE BL_NK NCT FILMED
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Sensitivity of Planetary Cruise Navigation
to Earth Orientation Calibration Errors

J. A. Estefan

Navigation and Flight Mechanics Section

W. M. Folkner

Tracking Systems and Applications Section

A detailed analysis was conducted to determine the sensitivity of spacecraft navi-

gation errors to the accuracy and timeliness of Earth orientation calibrations. Anal-

yses based on simulated X-band (8.4-GHz) Doppler and ranging measurements ac-

quired during the interplanetary cruise segment of the Mars Pathfinder heliocentric

trajectory were completed for the nominal trajectory design and for an alternative

trajectory with a longer transit time. Several error models were developed to char-

acterize the effect of Earth orientation on navigational accuracy based on current

and anticipated Deep Space Network calibration strategies. The navigational sensi-

tivity of Mars Pathfinder to calibration errors in Earth orientation was computed for

each candidate calibration strategy with the Earth orientation parameters included

as estimated parameters in the navigation solution. In these cases, the calibration

errors contributed 23 to 58 percent of the total navigation error budget, depend-

ing on the calibration strategy being assessed. Navigation sensitivity calculations

were also performed for cases in which Earth orientation calibration errors were not

adjusted in the navigation solution. In these cases, Earth orientation calibration

errors contributed from 26 to as much as 227 percent of the total navigation error

budget. The final analysis sugg_t._ that, not only is the method used to calibrate

Earth orientation Wtally important for precision navigation of Mars Pathfinder, but

perhaps equally important is the method for inclusion of the calibration errors in

the navigation solutions.

I. Introduction

Radio metric data, particularly two-way coherent Doppler and range, have been used to navigate

robotic spacecraft since the inception of planetary exploration. For a spacecraft in interplanetary cruise

or transit, much of the information content inherent in the data for position determination comes from

the signature imposed on the station-spacecraft radio signal by the Earth's rotation [1-3]. The diurnal

signature in the radio metric data yields information about the right ascension and declination of the

spacecraft with respect to the direction of the Earth's spin axis at the time of observation. The orientation

of the Earth, as a function of time, must be known with respect to inertial space in order to effectively

utilize the radio metric data to deduce spacecraft position with respect to the target planet. Errors in

Earth orientation thus lead to targeting errors for spacecraft approaching other planetary bodies.



Evidence of the need to adequately account for Earth orientation errors came as early as April 1965

when flight project navigation teams for the Rangers VII and VIII hmar probes observed a large difference

in station longitude solutions for all deep-space stations using radio metric data [4]. This was later

determined to be the result of improper Earth orientation calibration. As a result, Earth orientation

calibration methods were later refined to support the Mariners IV and V planetary exploration missions.

To assess the effect of Earth orientation calibration errors on interplanetary cruise navigation for both

current and future Deep Space Network (DSN) Earth orientation calibration techniques, a navigation error

analysis of the Mars Pathfinder approach scenario was performed. Mars Pathfinder has the most stringent

planetary cruise navigation requirements of any currently planned mission. Other Mars lander missions

similar to Pathfinder are being studied. Navigation performance for these future missions may exhibit

different sensitivity characteristics to Earth orientation calibration errors since the sensitivity is trajectory
dependent. In this study, two Mars approach trajectories were evaluated, the nominal Pathfinder cruise

trajectory with arrival at Mars on July 4, 1997, and a second trajectory with a longer transit time. Clearly,

restricting the study to only two trajectories is far from encoml)a_ssing tile entire range of possible planetary
approach scenarios. Moreover, actual navigation performance will vary depending on targeting point and

targeting requirements, the data type and arc length, filtering strategy, and observation geometry, which

could vary depending on each launch opportunity (especially spacecraft right ascension and declination at

encounter). The study of two "representative" trajectories, while limited, at least provides some insight
into the possible range of navigational uncertainties caused by Earth orientation calibration errors.

Other types of navigation problems have varying sensitivity to Earth orientation error. For spacecraft

in close orbit about another planetary body, such as Magellan or Mars Global Surveyor (MGS), the

primary signature on the spacecraft radio signal is imposed by the orbit about the planet. Doppler

measurements Call be used to determine all spacecraft orbital elenlents in most cases, and the resultant

orbit determination is largely insensitive to Earth orientation errors. If, however, the orbit determination

using Doppler data is not accurate enough to meet the mission requirements, two-station differenced-

Doppler or narrow-band very long baseline interferometry (VLBI) observations can be used for improved
orbit determination in some cases. In fact, the Magellan project utilized differenced-Doppler data for this

purpose. A detailed sensitivity analysis of differenced-Doppler navigation to Earth orientation calibration

errors is not presented in this article, but a cursory approximation is given in Appendix A. In contrast to

spacecraft in close planetary orbit, the Galileo and Cassini spacecraft will be in long-period (_120-day)

orbits about Jupiter and Saturn, respectively. These rel)resent an intermediate case between planetary

approach and low planetary orbit, so some sensitivity to Earth orientation errors might be expected.

Onboa-rd optical images of planetary satellites will be an important data type in determining tile orbits

for Galileo and Cassini. The added complexity of blending onboard optical data with radio metric data

precluded this study fronl assessing tile navigation sensitivity to Earth orientation errors for these outer

planet orbiters.

Ill this article, a navigation error analysis is described that was used to assess the impact of various

Earth orientation calibration strategies on predicted spacecraft orbit determination accuracies during

interplanetary cruise. Section II provides the fimdamental framework for defining the principal param-

eters that arc used to characterize Earth orientation, while Section III focuses oil the Earth orientation

calibration process used by the DSN. These discussions are followed by a description ill Section IV of

tho origin and format of the functional requirelnents levied on tile DSN tracking system by the flight

projt_cts. In Section V, a sinlple information content analysis is presented to obtain a rough estimate of

the influence of Earth orientation errors on Dol)pler eruise navigation performance. Section VI describes

the assmnptions used in a linear cowtriancc analysis to evaluate tile sensitivity of spacecraft navigational

accuracies to Earth orientation calibration errors for two Mars Pathfinder approach scenarios. Various

Earth orientation calibrati(m strategies arc described, together with tracking data simulation and error
modeling assmnptions. Results and key obs(_rwttions from the numerical assessment are sunnnarized and
discussed at the conchlsion of the artMe.



II. Earth Orientation Parameters

The Earth is an oblate, spinning body that undergoes precession and nutation due to the torques

exerted upon it by the Sun, Moon, and other planets. The north pole of a body-fixed (crust-fixed)
coordinate system varies unpredictably with respect to the spin direction, due to internal dynamics of the

Earth and its atmosphere (a process called "polar motion"). Similar effects cause the Earth's rotation

rate to vary unpredictably. (The variations in the rotation rate are several times larger than the polar
motion variations.)

The orientation of a body in inertial space can be completely described by three Euler angles. Because
the Earth rotates rapidly, the three angles describing the orientation of the surface with respect to inertial

space vary rapidly with time. Conventionally, the orientation of the Earth is described by five angles that

vary slowly with time, rather than by three rapidly varying angles. These five angles are described in
greater detail below.

In the development of the 1980 International Astronomical Union (IAU) theory of nutation [5], the
concept of the celestial ephemeris pole (CEP) was introduced. The CEP was defined such that there

are no nearly diurnal motions of the CEP with respect to either space-fixed (inertial) or body-fixed_

coordinates. For a rigid body with no polar motion, the CEP corresponds to the body axis about which
the body is spinning.

The motion of the CEP in space-fixed coordinates, due to precession and nutation, can be described by

the two angles, _p and _, where s is the obliquity (inclination of the equatorial plane to the Earth's orbital

plane) and ¢ is the intersection of the equator and orbit with respect to a fixed equinox. The variation in

the Earth's rotation about the CEP affects the time at which celestial objects cross the apparent meridian

and is measured by a quantity called Universal Time (UT) (specifically, Universal Time 1, or "UTI').

Variations of the CEP in body-fixed coordinates are measured by the quantities polar motion "X" and
polar motion "Y".

Because of the random variation of UT1 and polar motion (along with imperfect modeling of precession

and nutation), an accurate description of Earth orientation requires continual monitoring. VLBI data

can be used to determine all components of Earth orientation with 5 nrad or better accuracy (1-sigma). 1
Because VLBI measurements require correlation of large volumes of data from ground stations separated

by large distances, there is usually a time delay between the acquisition of raw VLBI data and the

processing of the data that determines the Earth orientation angles. This processing delay is currently 2

to 3 days for DSN VLBI measurements made for rapid determination of Earth orientation (i.e., TEMPO
measurements, described in Section III); the delay is longer for VLBI data from external services. Satellite

laser ranging (SLR) or Global Positioning System (GPS) data can also be used to determine polar motion

and small changes in UT1 with shorter data-processing times but are not able to directly measure all

five Earth orientation angles. Atmospheric angular momentum (AAM) data are highly correlated with

variation in UT1 and the length of the day (LOD), a parameter proportional to the rate of change of
UT1. Therefore, AAM data, both measurements and forecasts, have been used to improve predictions

for hoth lIT1 and LOD [6].

Precession/nutation models with parameters adjusted to fit the observed space-fixed motion of the

CEP, e.g.,[7,8], have an accuracy of 5 nrad or better over the time of the fit. These models can be used

to predict precession and nutation for periods of about 1 year before discrepancies systematically exceed

5 nrad. Figure 1 shows a comparison of the daily correction calibrations (from 1991 to 1995) with a

model by Steppe et al. fit to data through the end of 1993 [9]. The nutation corrections are with respect

1Earth orientation accuracies are often quoted in a variety of units. An angle of 5 nrad is approximately equal to 1 milliarc-
second (mas). An angular rotation of 5 nrad corresponds to a change in position on the surface of the Earth (equatorial
displacement) of about 3 cm. A change in UT1 of 1 millisecond (ms) corresponds to an angle of about 15 mas, which is
equivalent to an angle of 75 nrad, or to an equatorial displacement of roughly 50 cm.
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Fig. 1. A comparison of a nutation correction model to observations. The correction angles
(a) sin(E) 5_ and (b) _E are corrections to the IAU (1976) nutation model [5]. (A change of _ or
sin(E) 5_ of I mas corresponds to a shift in the inertial position of a point on the Earth's surface
of about 3 cm.)

to the 1976 IAU precession model [10,11] and 1980 IAU nutation model [5]. The corrections are currently

about 10 mas (_-,50 nrad) and are increasing with time. It can be seen that the predictions of the model

fit to data through the end of 1993 agree with the later measurements to an accuracy of about 1 mas for

al)out 1 year.

UT1 and polar motion (collectively referred to as UTPM throughout this article) vary randomly due

to the interaction of the atmosphere and the crust. UT1 varies much more rapidly than polar motion.

Random variation in UT1 can be characterized by an integrated random walk, while polar motion behaves

approximately as an integrated Gauss Markov process [12]. UT1 varies by an amount corresponding to

an angle of 1 lnas in about 1 day, so continual, rapid calibration is required to be able to completely

describe Earth orientation to 1-mas accuracy.

IIh Earth Orientation Calibrations

At, the Jet Propulsion Laboratory (JPL), Earth orientation calibrations are currently determined by

the DSN's Time and Earth Motion Precision Observations (TEMPO) activity. TEMPO, which became
operational in late 1983, was chartered to provide an operational Earth orientation service both to support

JPL's spacecraft navigation efforts and to serve the worldwide community [13]. TEMPO supports Earth

orientation calibration by performing VLBI measurements at regular intervals (currently twice per week)

using the DSN's 7(}-m antemm subnetwork. (Prior to 1983, Earth orientation calibrations were provided

by the DSN's Tracking System Analytic Calibration (TSAC) activity, which produced calibrations based

on monthly estimates of UTPM disseminated by the Bureau Internationale de l'Heure (BIH) in Paris,

France.) 2 The Kahnan Earth Orientation Filter (KEOF) is used to combine the TEMPO measurements

2 T. I,'. Runge, personal communication, Tracking Systems and Applications Section, Jet Propulsion Laboratory, P_sadena,

California, Februa.ry 1995.



with other sources of Earth orientation information. By performing regular VLBI measurements and

including AAM measurements and forecasts, together with other data from Earth orientation services

outside JPL, the DSN can deliver, at any time, an Earth orientation calibration accurate to 50 nrad

(1-sigma) [6]. Earth orientation accuracy is better for times 15 days or more in the past, for which a

greater amount of processed VLBI data from external services is available. Earth orientation predictions

are also delivered, with accuracies that degrade with time due to the random behavior of UTPM. Efforts

are ongoing to improve these predictions both by modeling improvements within the KEOF and by better

utilization of geodetic and AAM data. a

The standard DSN Earth orientation calibration file (referred to as a UTPM STOIC file) is a text file of

polynomial coefficients that provides UTPM calibrations for 37 specified times. 4 Precession and nutation

calibrations are not included. The limitation to 37 calibration times has implications for the accuracy of

Earth orientation available to the end-user (e.g., navigation teams) because of the integrated-random walk

characteristic of UTPM. Several flight projects utilize calibration files that span a year or more, giving

10-day spacing (or more) between calibration times. Midway between respective calibrations at 10-day

intervals, the expected (1-sigma) error in UT1 is about 0.4 ms (_20 cm) even if the calibration is perfect at

the calibration times. This limitation, together with the lack of precession/nutation calibrations, has led

to a new DSN calibration file--the Earth-Orientation Parameter (EOP) file--which includes precession

and nutation corrections and has no limit on the number of calibration times. 5 It should be noted that

all timing calibrations and their rates are given with respect to a reference time defined by atomic clocks,

specifically, International Atomic Time (TAI).

IV. Functional Requirements

Navigation-related requirements for current and future missions are defined primarily by flight projects

and future mission study teams. These requirements serve as a starting point to establish DSN ground

support requirements to satisfy mission navigation. In the past, navigation requirements for calibrations

such as Earth orientation, station locations, and transmission media typically have been arrived at in

an ad hoc manner without thorough analysis. This practice has at times resulted in confusion and later

cancellation of implementation plans to develop calibrations for which there was an erroneously believed

need.

Arguably, flight projects and future mission study teams find it more economical to simply adopt past

calibration performance or to adopt anticipated improvements in the calibrations rather than conduct a

parametric study in which all possible navigation calibrations are investigated. In order to meet mission

navigation needs, the DSN has documented UTPM calibration capabilities and requirements for the

, , _.7 _^ rT_D_ requ _.... _ _r_ _,n_o_l n_- "(n_ ._N (1-tracking and navigation suobybtems, x,_ ....... _ _, ............... ,-, cm

3 j. O. Dickey, personal communication, Tracking Systems and Applications Section, Jet Propulsion Laboratory, Pasadena,

California, August 1995.

4 In the early 1970s, all UTPM calibration data for mission operations were supplied in a single computer card deck called

a PLATO deck (Platform ...... ' .... _ _,_A_'r_ system _pl.o_._ _h_ f..... T ruing nncl Pnlvnnrnial (TPOLY'I

computer program for generating separate timing calibration data [14]. For contingency purposes, a smaller and simpler

backup program was developed to generate PLATO-style decks that could be delivered rapidly in the event PLATO was

not operable. This program was called STOIC (Standby Timing Operation In Contingencies)--hence, the frequently

encountered convention "STOIC" file or, more appropriately, "UTPM STOIC" file. Sometimes, these files are referred to

by their historical convention as "TPOLY" files or simply as "TP" arrays.

5 DSN Tracking System Interfaces, Earth Omentation Parameter Data Interface (TRK-2-21), DSN System Requirements

Detailed Interface Design, JPL 820-13, Rev. A (internal document), Jet Propulsion Laboratory, Pasadena, California,
April 19, 1985.

6 DSN System Functional Requzrements and Deszgn: Tracking System (1988 Through 1993), JPL 821-19, Rev. C (internal

document), Jet Propulsion Laboratory, Pasadena, California, pp. 3-20, April 15, 1993.

7 NOCC Subsystem Functional Requirements: Navigation Subsystem (1988 Through 1993), JPL 822-18, Rev. A (internal

document), Jet Propulsion Laboratory, Pasadena, California, pp. 3-7-3-8, May 15, 1988.



sigma) in each component, predictive, for the days on which the calibrations are generated; (b) 5 cm

(1-sigma) in each component, non-predictive, for periods through 14 days prior to the day on which the

calibrations are generated; (c) 5 to 25 cm (1-sigma) in each component of polar motion, non-predictive,

for periods from 1962 through 1984; and (d) 10 to 40 cm (1-sigma) in UT1, non-predictive, for periods

from 1962 through 1984. ''s

The exact origin of the 30-cm real-time knowledge requirement is not widely known, although it

is clear that it was arrived at via the common practice of synthesizing past flight project navigation

team requirements and what the current calibration activity claimed could be delivered in terms of

accuracy and timeliness. There is a common misconception that the 30-cm functional requirement for

all three components of UTPM was driven by Magellan mission requirements. In actuality, the Magellan

30-cm requirement was inherited directly from the Galileo project for a 30-cm real-time UTPM knowledge

requirement. 9 The UTPM requirements levied by future missions (e.g., Cassini, MGS) vary from flight

project to flight project and are subject to change. Therefore, mission-specific requirements will not be

presented here. It is fair to state that an effort is under way to update the overall Earth orientation

calibration functional requirements for Mars Pathfinder (precession/nutation as well as UTPM) based on

the analysis presented in this article.

V. Information Content Analysis

Early analytic studies suggest that Earth orientation uncertainties result in equivalent uncertainties in

the instantaneous location of tracking stations, which leads to a degradation in the apparent quality of the

radio metric data used for navigation [15-17]. As noted in the introductory remarks, timing (UT1) errors

in particular can lead to an erroneous prediction of the spacecraft coordinates near planetary encounter.

Much of Doppler data's information content, when acquired during interplanetary cruise, comes from

the diurnal signature of the Earth's rotation. This is evident in a simple analytic representation of the

instantaneous range rate,/5, observed by an Earth-based tracking station [1 3]:

/5 = v_ + r_a_, cos 3 sino_,t + (-Aa + A_ + _,AUT1)r_cz, cos_ cosa:,t (1)

Here, v,. denotes the spacecraft radial velocity with respect to the Earth; rs is the distance of the station

from the Earth's spin axis, we denotes the rotation rate of the Earth, and t is measured from the nominal

time the spacecraft crosses the tracking station's meridian. The _ is the instantaneous declination of the

spacecraft, Aa the correction to the a priori value of spacecraft right ascension, AA the correction to the

station longitude, and AUT1 the correction to rotation about the spin axis. There are, of course, other

parameters to be estimated. Moreover, this simple model neglects the additional geometric strength that

comes from the motion of the Earth about the Sun and the use of nmltiple tracking stations. Nevertheless,

this model is useful to illustrate (to first order) the effect of Earth orientation errors on the Doppler data.

It is clear from Eq. (1) that an error in rotation about the Earth's spin axis would directly affect the

right ascension estimate. For example, at Deep Space Station (DSS) latitudes (_35 deg), a 1-ms timing

error is equivalent to a longitude error of about 0.4 m, or a right ascension error of about 0.07 prad

[13]. Polar motion affects the spacecraft position estimate by producing displacements in the station

spin radius, longitude, and height above the equator. These displacements can be as large as 10 m

if not properly calibrated. Equation (1) expresses the spacecraft right ascension and declination with
resl)ect to the Earth's equator of date. Errors in precession and nutation models can lead to e.rrors in

the transformation of the "of-date" right ascension and declination estimate into the inertial coordinate

s Ibi(l.

!)S. N. Moha,l and W. L. Sjogren, "Revised Navigation Requi,'ement Specification for the VRM Mission Requirements Docu-
ment 630-6 and Prelmmmry Spacecraft Instrumentation Requirements Document (SIRD)," JPL Interoffice Memorandum
314.10-348, Rev. I (mte,'nal document), Jet Propulsiou Laboratory, Pasadena, California, September 22, 1983.



systemof theplanetaryephemeris.Precession/nutationmodelingerrorsarerarelysignificantforEarth-
orbitingspacecraft,wheretheobservationaldatatie thespacecraftorbit muchmoretightly to a local
coordinatesystem.Forinterplanetaryspacecraft,thetrajectorydeterminedbyEarth-basedradiometric
datamustberelatedto thepositionofadistantplanet.

VI. Navigation Error Analysis

To investigate the effect of various levels of Earth orientation calibration accuracy on interplanetary

cruise navigation, an error covariance analysis of the Mars Pathfinder approach segment was performed.

The Mars Pathfinder approach scenario was selected because it has the most stringent planetary ap-

proach navigation requirements of any currently planned mission. Future Mars lander missions may

utilize different trajectory designs and potentially could exhibit a lesser or greater level of sensitivity to

Earth orientation calibration errors than those presented herein. This analysis is intended to serve as a
representative model.

A. Calibration Strategies (Test Cases)

In order to study the effect of Earth orientation calibrations on Mars Pathfinder cruise navigation,

six test cases were developed to cover a wide range of possible Earth orientation calibration strategies.
The level of calibration errors, which are a function of time, depends on the amount of data included in

creation of the calibration files and on the timeliness of their deliveries. Precession/nutation calibrations

were not included in this study since it is possible to predict the corrections for about a year with an
accuracy approaching ,-_1 mas. All cases of Earth orientation studied here assume a basic set of VLBI

measurements that can provide this level of precession/nutation accuracy (cf., Section II).

The Earth orientation calibration cases are characterized by the uncertainty in UT1 and polar motion

as a function of time and by the correlations between the errors at different times. The reference day for

the Earth orientation calibration cases is the day on which the navigation solution is performed. Figure 2

shows the assumed uncertainty in UT1 for the six cases, while Fig. 3 illustrates the assumed polar motion

uncertainties. To simplify the analysis, the indicated level of polar motion uncertainty was assumed for

both the X and Y components independently, even though actual measurements show that uncertainty

in predictions for polar motion Y increase about 30 percent slower than for polar motion X [12]. Table 1
gives additional information about the statistics of each Earth orientation case. In all cases, the errors

due to the potentially sparse array of calibration times imposed by the STOIC file have been neglected

since this effect can be removed either by use of the EOP file or by use of a STOIC file that spans the
shortest time possible.

The baseline Earth orientation case is the current nominal DSN capability and is mmca_eu"'_ "- j _-- _x,',_,_nr_,J

in the figures and in Table 1 [6]. l° This is based on two DSN VLBI measurements per week combined

with data available from other sources. It is assumed that the last processed TEMPO VLBI measure-

ment of UT1 was acquired 5 days before the KEOF filter run and that the KEOF filter run is performed

1 day prior to the navigation solution. For UT1 prediction, the rate of change in UT1 is important.

The UT1 rate is dependent on the last two processed TEMPO measurements. For this particular case,

UT1 was characterized as a first-order Gauss-Markov random process with a 1-sigma steady-state un-

certainty of 0.11 ms and a 5-day correlation time until 7 days prior to the navigation solution; from this

time forward, UT1 uncertainty was characterized by an integrated random walk (through the time of the

navigation solution). The current KEOF filter solutions include the TEMPO VLBI measurements and

AAM measurements and forecasts to give the stated capability for UT1 accuracy on any given day. In

addition, daily VLBI measurements from external services are included in the KEOF filter solutions to

provide the steady-state uncertainty of 0.11 ms for times in the past. (The 0.11 ms is larger than the

10A. P. Freedman, "Polar Motion Prediction With KEOF," JPL Interoffice Memorandum 335.2-92.01 (internal document),
Jet Propulsion Laboratory, Pasadena, California, March 5, 1992.
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Table 1. Earth orientation calibration accuracies

for various strategies.

CMibration strategy

TAI - UT1

1-sigma, ms

Polar motion

1-sigma, mas

-21 days 0 days -21 days 0 days

TEMPO (current) 0.11 0.71 1.6 5.6

Delayed TEMPO 0.11 1.32 1.6 7.7

Delayed TEMPO - AAM 0. l I 1.93 1.6 7.7

TEMPO + (IPS (COl)E) 0. ll 0.23 1.6 2.3

C, PS (COI)I';) + 2 VIA3I/mo 0.18 0.39 1.6 2.3

GPS (.JPL) + 2 VLBl/mo 0.18 0.25 1.6 2.3



quoted measurement uncertainties in order to accommodate possible offsets and drifts between various

Earth orientation services.) In addition, the KEOF includes polar motion determinations from SLR

lneasurenmnts of Earth-orbiting satellites, which are available up to 5 days before the filter run (6 days

before the navigation solution). The uncertainty in each component of polar motion was modeled as

first-order Markov with a 5-day correlation time and a 1-sigma steady-state uncertainty of 1.6 mas, up

to 6 days before the navigation solution, at which time the uncertainty was modeled as a random walk

increasing to the final time. For times later than 6 days before the navigation solution, polar motion was

modeled as a random walk that approximated the observed polar motion statistics [12]. (An integrated

Gauss-Markov process was not used due to the difficulty in implementing it in the covariance analysis

software.)

To investigate the importance of timely Earth orientation calibration delivery, two cases were included

with a 6-day delay between the KEOF filter run and the navigation solution. The case labeled "de-
layed TEMPO" in Figs. 2 and 3 and in Table 1 is identical to the baseline case except for an additional

6-day delay. For the delayed TEMPO case, UT1 uncertainty is assumed to grow as an integrated ran-

dom walk 13 days before the navigation solution, and polar motion begins to grow as a random walk

11 days before the navigation solution. A third case, labeled "delayed TEMPO - AAM," is identical

to the delayed TEMPO case except that AAM data in the KEOF solution are not included. Without

the AAM data, the UT1 uncertainty begins growing as an integrated random walk 13 days prior to the

navigation solution, but at a faster rate. The polar motion uncertainty is identical for those two cases,

i.e., delayed TEMPO and delayed TEMPO - AAM.

Measurements of GPS satellites have been used extensively for geodetic purposes, and GPS data have

a demonstrated capability to measure polar motion and LOD. (Recall LOD is directly related to UT1

rate.) For the past 2 years, the Center for Orbit Determination, Europe (CODE) has been producing

daily measurements of polar motion and LOD with a week or more delay between data acquisition and

Earth orientation delivery. There are plans for the DSN to begin rapid processing of GPS data to sup-

plelnent and partially replace TEMPO VLBI measurements in an effort to reduce loading on the DSN's

70-m subnetwork. If the measurements of LOD are uncorrelated (i.e., "white"), then including LOD

measurements implies a random walk noise on UT1. Three cases of VLBI and GPS data combinations
are included here assuming that the GPS LOD measurements are uucorrelated. The actual noise char-

acteristics are under investigation. If the LOD measurements turn out to be correlated, 11 then the effect

of GPS Earth orientation calibrations on navigation error may be different than the results presented in
this article.

The fourth Earth orientation case, labeled "TEMPO + GPS(CODE)," assumes the current level of

external VLBI measurements, the current two ....._ r,_v_r v,_'"v_r_,*Drpasses each week, pl,,¢...........O.PR pnlar motion

and LOD lneasurements with a 1-day processing time. For this case, UT1 was assumed to behave as a

Gauss-Markov process with a 5-day correlation time and a 1-sigma steady-state uncertainty of 0.11 ms

until 7 days before the navigation solution, at which time the UT1 uncertainty was assumed to grow as
a random walk at a level characteristic of the CODE GPS LOD deliveries. Each component of polar

motion is described by a Gauss-Markov process with a 5-day correlation time and a 1.6 mas steady-

state uncertainty (1-sigma) until 2 days before the navigation solution, at which time the polar motion
uncertainty increases as a random walk. (This polar motion uncertainty model is assumed for all three

cases that include GPS data.)

Because the current DSN plan is to utilize GPS LOD measurements so as to acquire fewer VLBI

measurements, and because the number of external VLBI services has been steadily declining, the fifth

Earth orientation case assumes that only two VLBI measurements are acquired per month and combined

t 1Preliminary studies of JPL GPS-derived LOD measurements exhibit "nonwhite" behavior on time scales longer than 3 5
days, A. P. Freedman, personal communication, Tracking Systems and Applications Section, Jet Propulsion Laboratory,
Pasadena, California, August 18, 1995.



with GPSmeasurements.Thecase,labeled"GPS(CODE)+ 2VLBI/mo"in thefiguresandin Table1
assumesa 10-daydelayin processingthe VLBI measurements.Thisdelaymayoccurasa resultof
reducingtheloadon the70-msubnetwork,wherebyVLBI measurementsareacquiredusingthe34-m
subnetwork.Thisstrategywouldrequiretapesto beusedto recordtheVLBI dataandshippedbackto
JPLfor processing.With a 10-daydelaybetweenVLBIdataacquisitionandfinalprocessing,thelatest
VLBI measurementtheKEOFcouldpossiblyincludewouldbe11daysbeforethenavigationsolution
with aworst-casedeliveryof 25daysbeforethenavigationsolution.Forthiscase,it wasassumedthat
the UT1uncertaintybehavedasa Gauss-Markovprocesswith a 5-daycorrelationtimeanda 1-sigma
steady-stateuncertaintyof 0.18msuntil 18dayspriorto thenavigationsolution.Thishighersteady-
stateuncertaintyisdueto thelackof dailyVLBI measurementsfromexternalservicesandreflectsthe
uncertaintyfromusingdailyGPSLODmeasurementsto interpolatebetweenVLBI UT1measurements.
At 18daysbeforethenavigationsolution,theUT1uncertaintyisassumedto growasa randomwalkat
a levelcharacteristicof theCODELODmeasurements.

ThecurrentDSNplanis to havein placea JPLrapidGPSprocessingsystemforEarthorientation.
The3-yearimplementationcyclewill beginin fiscalyear1996with provisionaloperationsbeginning
asearlyasfiscalyear1998.This will givewayto a fullyoperationalsystemby fiscalyear1999.12
Theprocessingimplementationplanis underdevelopmentbut, asa test, therehavebeendailyGPS
solutionsforLODperformedsincelate1994.Thesesolutionsdonot spana longenoughtimeperiod
to provideagoodstatisticalmeasureof performance,but preliminaryresultsindicatethe JPL LOD
measurementslnaybe twiceasaccurateasthe CODEdeliveries.ThesixthEarthorientationcase,
labeled"GPS(JPL)+ 2VLBI/mo,"is identicalto theprevioustestcase,GPS(CODE)+ 2VLBI/mo,
exceptthat at 18daysbeforethe navigationsolution,theuncertaintyin UT1 is assumedto begina
randomwalkbehaviorwithaslowergrowthrate.

B. Mars Pathfinder Tracking and Error Modeling Assumptions

The Mars Pathfinder spacecraft will directly enter the Martian atmosphere from Earth transfer orbit

for landing on the Martian surface. Other missions (e.g., Cassini, MGS) will either fly by the target

planet or enter orbit through a series of orbital correction maneuvers. The primary atmospheric entry

constraint for Mars Pathfinder is the flight path angle, the angle between the incoming velocity vector

of the spacecraft and the vector normal to the Martian atmosphere. If this angle is too large (shallow),

the spacecraft may overheat before parachute deployment, and if the angle is too small (steep), excess

pressure may develop that could potentially damage the spacecraft's aeroshell from ablation. This entry

angle constraint is expected to place the most stringent requirements on calibration of Earth orientation.

A secondary requirement is to target the spacecraft to land within a predetermined landing footprint on

the Martian surface. The size of the landing footprint is 100 km x 300 kin.

The Mars Pathfinder spacecraft will be spin stabilized throughout its interplanetary cruise to Mars

aml will communicate through its high-gain antenna. The onboard telecommunications system has an

X-band (7.2-CHz) uplink/X-baud (8.4-GHz) downlink radio system, which will be used to acquire Doppler

and ranging measurenmnts and to transmit science and engineering telemetry data. The nominal launch
window is a 30-day launch period beginning on December 5, 1996.13 Arrival at Mars is scheduled to

occur on July 4, 1997. The launch vehMe will be targeted so that it will not impact the Martian sur-

time. In the first 60 days after lamlch, two trajectory correction maneuvers (TCMs) will be performed

to remove the effects of launch vehicle injection errors and to remove the targeting bias. A third TCM

(TCM-3) is scheduled to be executed 60 days prior to Mars atmospheric entry. The critical navigation

(_Vellt time is just befol'(? the final maneuver (TCM-4). Five days prior to TCM-4, a navigation solu-

tion will be gmlerat_,d to design the fiual ulaln'uver. The nmneuver design COnlnland parameters will

12 S. M. IAchten, personal communication, Tracking Systems and Applications Section, Jet Propulsion Laboratory, Pasadena,

(_alifln'lfia, January 19!}5.

la At. the time this article wt_nt to print, the actual lmmch window was not yet fixed since the mission profile and spacecraft

launch mass were still being refined.
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be uplinked to the spacecraft for execution from 10 to 15 days before atmospheric entry. Expected tra-

jectory uncertainties for this critical navigation delivery have been carefully studied by Thurman and

Kallemeyn 14'15'1G via linear covariance analysis and Monte Carlo simulation. The covariance analysis

assumptions adopted herein to assess the sensitivity of the critical Mars Pathfinder navigation solution

to various Earth orientation calibration strategies were derived in large part from these earlier navigation

performance assessments.

The nominal Mars Pathfinder trajectory is a so-called "Type I" trajectory, where the heliocentric

longitude of the spacecraft changes by less than 180 deg between launch and arrival. An alternative

"Type II" trajectory, where the heliocentric longitude of the spacecraft changes by more than 180 deg

and less than 360 deg between launch and arrival, was originally considered for Mars Pathfinder. Analysts

who first studied the Type II trajectory option suggest that the principal reasons the Type I trajectory

option was preferred were (1) to attempt to minimize 70-m antenna conflicts between Mars Pathfinder at

arrival and the Galileo mission at Jupiter, (2) to shorten the cruise time from _11 months to _7 months,

which would yield less consumables in terms of propellant, and (3) to attain a more favorable geometry

for the spacecraft to remain at Earth-point during cruise while maximizing the Sun's exposure to the

solar arrays. 17 (The Sun probe-Earth angle is small for this mission.) A navigation error analysis for the

Type II option was included in this assessment because some future missions to Mars (including MGS)

will utilize Type II trajectories.

Table 2. Assumed data arc lengths for Mars Pathfinder
navigation analysis.

Trajectory Launch/arrival date
Data arc specification

Begin, days a End, days b Length, days

Type I January 3, 1997/ L + 60 M- 15 107

July 4, 1997 (fixed)

Type II December 2, 1996/ L + 236 M- 15 107

November 10, 1997 (fixed)

a L = launch.

b M = Mars arrival.

The tracking data arcs assumed for the covariance analysis are shown in Table 2 for both the Type I

and Type II trajectories. X-band two-way coherent Doppler and ranging data were blmu,_u ovcr .....

intervals. DSN coverage varied according to the nominal DSN data acquisition schedule specified in the

Mars Pathfinder Navigation Plan.iS For the Type I transfer phase (L + 60 days to M- 45 days), the DSN

coverage was taken to be one 4-h pass/week per complex; during the Mars approach phase (M-45 days to

Mars __rrivM), continuous coverage was assumed; and for the TCM-3 phase, one 8-h pass/day (continuous

for 12 h before and after TCM-3) was assumed over the interval TCM + 3 days. ±he same u_a arc

14 S. W. Thurman, "Orbit Determination Filter and Modeling Assumptions for MESUR Pathfinder Guidance and Navigation

Analysis," JPL Interoffice Memorandum 314.3-t075 (internal document), Jet Propulsion Laboratory, Pasadena, California,
October 15, 1993.

15 Navigation Plan: Preliminary Version, Pathfinder Flight Project, JPL D-11349 (internal document), Jet Propulsion
Laboratory, Pasadena, California, December 1993.

16 Navigation Plan: Critical Design Review Version, Mars Pathfinder Project, JPL D-11349 (internal document), Jet Propul-

sion Laboratory, Pasadena, California, July 1994.

17 V. M. Polhneier, personal communication, Navigation and Flight Mechanics Section, Jet Propulsion Laboratory, Pasadena,
California, March 1995.

18 Navigation Plan: Critical Design Review Version, op. tit.
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length was used for the Type II trajectory; thus, simulated data points began at L + 236 days. In an

effort to minimize the effects of potential station or complex outages while maximizing the angle-finding

capability of the ranging data, tracking passes were scheduled to alternate between DSN complexes.

The Doppler and ranging data were assumed to have measurement uncertainties of 0.09 mm/s (60 s

average) and 2 m, respectively (1-sigma). Although recent X-band Doppler data residuals are typically

smaller than 0.09 mm/s, a higher Doppler uncertainty was assumed in order to reflect the low-frequency
power of tile solar plasma noise spectrum that is not properly characterized by the root-mean-square of

the residuals. 19 A 20-rain integration time was assumed for each data point (for both data types).

The Mars Pathfinder trajectories were integrated from initial position and velocity conditions (epoch

state) using models for the dynamic forces on tile spacecraft. The modeled gravitational forces were due
to the masses of the Sun and the planets; relative locations of these bodies were based on the JPL DE200

ephemeris. Other forces modeled were nongravitational accelerations due to solar radiation pressure

(SRP), gas leaks from valves and pressurized tanks, and attitude maintenance activity. In addition,
TCM-3 maneuver execution errors were modeled.

Parameters estimated by the data reduction algorithm (a variant of the sequential Kahnan filter [18])

included a wide array of dynamic and observational error sources categorized as (1) spacecraft epoch

state, (2) spacecraft nongravitational force modeling errors, (3) maneuver execution errors, (4) errors
in the orbital elements of the Earth and Mars, (5) systematic Doppler and ranging error biases, (6)

transmission-media zenith delay calibration errors for the ionosphere and troposphere, (7) crust-fixed

station location errors, and (8) Earth orientation calibration errors for UTPM. All of these error sources

and their assumed a priori and steady-state values are summarized in Table 3. A priori uncertainties

for the spacecraft initial state were large enough to leave it essentially unconstrained, while nongravita-
tional forces were modeled as first-order Gauss-Markov random processes. (Note that all nongravitational

forces except the slowly varying SRP accelerations were modeled using a stochastic gas leak model and
are lumped under the category "NGA" in the table, where NGA denotes nongravitational accelerations.)

TCM-3 execution errors (for the TCM-4 delivery) were modeled as random biases in all three body-fixed

components. The uncertainty in the Earth Mars ephemeris was taken from the JPL DE234 ephemeris

error covariance by Standish, u° but constrained with the knowledge that the orientation of the Earth's

orbit is now known to 15 nrad [19]. For processing the two-way ranging data, the filter model included a

bias parameter associated with each ranging pass from each station in order to approximate the slowly

varying nongeometric delays in the ranging measurements that are caused principally by station delay
calibration errors and uncalibrated solar plasma effects. The spacecraft spin rate, detectable in the

Doppler signature, was estimated as a Gauss Markov process with a 5-day correlation time. Uncertainty

in knowledge of the station locations was assumed to be 10 cm for each component. This station location

uncertainty is expected to be characteristic of the new DSN beam-waveguide (BWG) antennas once sur-

w.'ys are complete. More accurate station locations exist for antelmas for which VLBI data are available,

including the 70-m antennas and the 34-m high-efficiency (HEF) antennas. 21

Although this study is restricted to the orbit determination problem and does not address the influence

of guidance errors on navigational accuracy, it is important to note that, upon completion of TCM-4,
the contribution of maneuver execution errors to the overall guidance dispersions are expected to be

negligible. This was demonstrated in preflight error analyses and is discussed in greater detail in the

Mars Pathfinder Navigation, Plan. 22

row. M. Folkner, "Effect of Uncalibrated Charged Particles on Doppler Tracking," JPL Interoltice Memorandmn
335.1-!),1-005 (internal document), Jet Propulsion Laboratory, Pasadena, California, March 1, 1994.

20 E. M. Standish, "l'he JPL Planetary Ephemerides, DE234/LE234," JPL Interoffice Memorandum 314.6-1348 (internal
docmlmnt), .Jet Propulsion Laboratory, Pasadena, California, October 8, 1991.

2' In actuality, the Mars Pathfinder spacecraft will be "uplink-limited" and will, therefore, require use of the 34-m fIEF
antenmus for telecommunication. A more conservative assessment is made herein by assuming the 34-m BWG antennas.

_2Navigation Plan: (;ritical Design Review Version, op. cit.
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Table 3. A priori and steady-state uncertainties for orbit

determination error model parameters.

Estimated parameter set Uncertainty, 1 cr Remarks

Spacecraft epoch state A priori Constant parameters

Position components 100 km

Velocity components 1 m/s

Nongravitational force model

Solar radiation pressure (SRP)

Radial (GT)

Transverse (Gx/Gy)

Gas leaks (NGA)

Radial (aT)

Transverse ( ax / ay )

Maneuver execution error model

TCM-3 (AVe, AVy, AVz)

(for TCM-4 delivery)

Planetary ephemerides error model

Earth-Mars ephemeris

Orbit orientation (3 Euler angles)

Longitude with respect to periapsis

Semimajor axis (Aa/a)

Eccentricity (Ae)

Ground system error model

Range biases

(one per station per pass)

Transponder bias

(ranging data only)

Doppler spin bias

(Doppler data only)

Transmission media

Zenith troposphere

Zenith ionosphere

DSN station coordinates

(crust-fixed rs, zh, A)

Earth orientation

Timing (UT1)

Polar motion (X,Y)

Steady-state

5% of nominal

5% of nominal

Steady-state

2 × 10 -12 km/s 2

2 X 10 -12 km/s 2

A priori

10 -2 m/s

A priori

15 nrad

10 nrad

5 parts in 1011

3 parts in 1010

First-order Markov

60-day correlation time

First-order Markov

5-day correlation time

5-day correlation time

Constant parameters

Constant parameters

A priori Constant parameters

lm

Steady-state First-order Markov

1 m 0.5-day correlation time

Steady-state First-order Markov

10 .2 mm/s 5-day correlation time

Steady-state First-order Markov

5 cm 0.1-day correlation time

5 x 1016 e/m 2 0.2-day correlation time

A priori Constant parameters

10 em (uncorrelated)

(cf., Section VI.A) (cf., Section VI.A)

C. Encounter Geometry

Because much of the strength of the Doppler and ranging data comes from the signature imposed by

the rotation of the Earth, interpretation of the covariance analysis results is aided by understanding the

encounter geometry.

The spacecraft position in the Earth spacecraft direction is directly measured by ranging data. Doppler

data help determine the other two components of the spacecraft position, which lie in the plane of the sky.

There is a well-known weakness in determining spacecraft declination from Doppler data for spacecraft
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near zero declination [1-3]. Spacecraft declination can be inferred from ranging data using tracking

stations located in both northern and southern latitudes [20]. Figure 4 shows the Pathfinder Type I

trajectory on the plane of the sky as viewed from Earth. As seen in the figure, encounter occurs near

zero declination. Because of this encounter geometry, the spacecraft declination will probably depend

upon ranging data, and the declination uncertainty should exhibit sensitivity to station delay calibration

errors. In contrast, the Type II trajectory has a relatively large, negative encounter declination, as shown

in Fig. 5. For the Type II encounter, the Doppler data will have a larger role in determining spacecraft

declination, which should thus be less sensitive to station delay calibration errors.
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A typical uncertainty ellipsoid for the spacecraft position on approach would have principal axes ap-

proximately aligned with the plane-of-sky axes, with a much smaller uncertainty in tile Earth-Mars

direction than in the other two components (assuming ranging data are included). Planetary approach

trajectories are typically described in aiming plane (B-plane) coordinates. 23 Figure 6(a) shows the rela-

tionship of the B-plane c oomponents to the plane-of-sky components for the Pathfinder TypeI encounter.

The approach direction, S, is nearly parallel to the radial (Earth-Mars) direction, F. The -R direction is

in the plane normal to the approach direction, S, and approximately parallel to the direction of increasing

declination, 5, while the -T direction is in the plane normal to the approach direction and approximately

23 For a complete description of the B-plane coordinate system, please refer to Appendix B.
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Fig. 6. The B-plane components for Mars Pathfinder approach tra-
jectories with respect to plane-of-sky coordinates: (a) Type I and
(b) Type II.

parallel to the direction of decreasing right ascension, -_. For the Type I trajectory, the well-determined

component is approximately in the direction of approach. A small position uncertainty in this direction

is expressed in the B-plane system as a small uncertainty in the time from encounter, i.e., linearized

time of flight (LTOF). The position uncertainty is approximately related to the LTOF uncertainty by the

approach velocity. For the Type I trajectory, the approach velocity is about 5.5 km/s (a 1-s uncertainty

in LTOF corresponds to a position error of about 5.5 km). An error in right ascension, such as might be

caused by a UT1 calibration error, will appear in the B • I" component.

Figure 6(b) shows the relationship of the B-plane components to the plane-of-sky components for the

Type II trajectory. The direction of the spacecraft approach to Mars, -S, is about 11 deg from the

direction of decreasing right ascension, -_. The -R direction is about 23 deg from the declination axis,

5. The -@ direction is about 23 deg from the Earth-Mars direction, F. For this trajectory, an error in

right ascension will be reflected mainly in LTOF. For the Type II trajectory, the approach velocity is

approximately 3.9 km/s.

Mars Pathfinder navigation is required to deliver, prior to the final maneuver (TCM-4), a trajectory

estimate with less than a 1-percent probability of exceeding the entry angle requirement. The latest

assessment of the Type I flight path entry angle requirement is -t-1 deg (99 percent), which implies a

requirement on the navigation delivery corresponding to a 3-sigma uncertainty of 21 km in the magnitude

of the impact parameter. 24 Stated another way, the entry corridor is 42-kin wide, as depicted in Fig. 7.

D. Results

In the covariance studies performed, a careful model was constructed for the time-dependent Earth

orientation errors shown in Figs. 2 and 3. This model would be somewhat difficult to implement into

the operational Orbit Determination Program (ODP), 25 which currently does not have a statistical reset

capability or an integrated random walk model such as the one used in this analysis. Because of this

limitation, the effect of each Earth orientation calibration strategy on the total orbit determination error

was calculated in two ways. For the first estimation method, the contribution to orbit determination

error from Earth orientation was determined with UT1 and polar motion included (i.e., estimated) in

the navigation solution, with correctly modeled time-dependent a priori uncertainties. In the second

estimation method, the contribution to orbit determination error was assessed under the assumption that

the Earth orientation calibration errors were ignored (i.e., not estimated) in the navigation solution.

24 p. K. Kallemeyn, personal communication, Navigation and Flight Mechanics Section, Jet Propulsion Laboratory,
Pasadena, California, March 1995.

25 The ODP is a large institutional software system used for research and navigation support of flight operations, N. D. Pana-

giotacopulos, J. W. Zielenbach, and R. W. Duesing, An Introduction to JPLs Orbit Determination Program, JPL 1846-37
(internal document), Jet Propulsion Laboratory, Pasadena, California, May 21, 1974.
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requirements (99 percent). (Note: the Earth equatorial plane is nearly

parallel to the direction to Mars.)

Figure 8 shows tile contribution to the total navigational uncertainty for the nominal (Type I) Mars

Pathfinder trajectory from all error sources described in Section VI.B except Earth orientation. The

covariance analysis results given below are expressed in B-plane components referred to the Earth mean

equator of 32000 (EME2000), as described in Appendix B. Contributions were computed in a manner such

that the sum of each error source, when added in quadrature, gives the total navigation uncertainty in a

root-stun-square sense [21]. The critical navigation parameter for Pathfinder approach is the magnitude

of the impact parameter, denoted INn. Recall from the previous discussion that IBI is related to the

flight path entry angle. For the nominal Pathfinder Type I approach trajectory, the B - @ uncertainty,

denoted gB_' is nearly the same as the uncertainty in IBI. In general, the relationship of the component

uncertainties gB.fi' (_B._' and alB I depends upon the choice of the targeted entry point.

The uncertainties in arrival time (LTOF) are very small because of the approach direction nearly
coinciding with the Earth-Mars direction, which is well determined by ranging data. The scale for

LTOF in Fig. 8(c) is 3 s and corresponds to a position uncertainty of about 15 km. The major error

source (other than Earth orientation) for B. T (_right ascension) is the anomalous nongravitational

accelerations (NGAs). The B - R (_-,declination) uncertainty has roughly equal contributions from data

noise, nongravitational forces, and station delay calibrations for ranging data. The 1-m accuracy of the

range bias calibrations assumed for the covariance analysis has been inferred from observations of the day-

to-day consistency of Mars Observer ranging data residuals [22]. This assumption should be interpreted

cautiously since the systematic effects in the Mars Observer range biases could have been absorbed by

other spacecraft trajectory parameters, such as nongravitational accelerations. Fortunately, this is not

an issue for Mars Pathfinder since the critical navigation component, IBI, is ahnost entirely in the right

ascension direction, ghrther, this navigation error analysis was not intended to be the "official" Mars

Pathfinder analysis. The principal purpose here was to provide a quantitatiw_ measure of the relative

importance of potential error sources, specifically, Earth orientation calibration errors.

Figure 9 illustrates the contribution to the total orbit determination uncertainty from each case of
Earth orientation calibration error described in Section VI.A. Here, it is seen that Em'th orientation

calibration errors are a significant source of error for Mars Pathfinder in the critical B • T and IBI
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Fig. 8. Relative contributions of the principal error sources (other than Earth orientation) to the total Mars
Pathfinder orbit determination uncertainty_ Uncertainties are shown in B-plane coordinates with respect to
the mean Earth equator of 2000: (a) B • R (-declination) uncertainty, (b) B oT(~right ascension) uncertainty,
(c) LTOF (time of encounter) uncertainty, and (d) unce, ,ain,y in _h=...v...........m=gnt wlp_of the impact, parameter, IBI.

components. 26 Earth orientation calibration error is less significant in the B - R and LTOF components.

The lack of sensitivity to Earth orientation in the LTOF direction is due to the fact that the approach

direction is nearly aligned with the Earth-Mars direction; therefore, LTOF is well determined by the
ranging data. The spacecraft declination (nearly aligned with the B • R direction) is determined largely

by ranging data at northern and southern latitude stations since, at the low encounter declination, the

Doppler data do not contribute much to the determination of declination. Because the declination is

26 Recall that errors due to precession and nutation were neglected from this analysis; thus, the formal Earth orientation

calibration errors are strictly due to UTPM calibration errors.
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Fig. 9. Relative contributions of Earth orientation to the total Mars Pathfinder orbit determination uncertainty<
Uncertainties are shown in B-pl&ne coordinates with respect to the mean Earth equator of 2000: (a) B • R
(-declination) uncertainty, (b) B °T (-right ascension) uncertainty, (c) LTOF (time of encounter) uncertainty, and (d)
uncertainty in the magnitude of the impact parameter, IBI. Uncertainties are given for both the case where Earth
orientation parameters were estimated in the navigation solutions and for cases where Earth orientation was not
adjusted in the navigation solution.

determined principally by ranging data with an assumed accuracy of 1 m, there is not inuch sensitivity

to Earth orientation errors for the calibration strategies studied here, which all give Earth orientation

errors snmller than 1 m at the Earth's surface.

In the case of current DSN Earth orientati(m calibration performance, assuming a delivery of the cali-
bration files on the day of the critical navigation solution from TEMPO VLBI data, Fig. 9(d) shows that

Earth orientation errors contribute at)proximately a9 percent of the 1-sigma [B I (flight path entry angle)
requirement of 7 kin for the case where UTPM parameters were included in the navigation solution,
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and 64 percent of the allowable error if UTPM were ignored in the navigation solution. The two Earth

orientation calibration cases with delayed delivery show contributions to navigation uncertainty that are

significantly larger. The delayed calibration cases are most likely unacceptable for the Mars Pathfinder

mission. The optimistic Earth orientation case, in which the current twice-weekly TEMPO VLBI mea-

surements are augmented with daily GPS data, shows a much smaller contribution to the navigation

uncertainty than the nominal TEMPO case. The two calibration strategies with daily GPS data com-
bined with reduced VLBI observations (2 VLBI/month) are comparable to the nominal TEMPO case.

In contrast to the nominal TEMPO case, the GPS-based calibrations exhibit smaller differences between

the strategy of including UTPM parameters and statistics in the navigation solution and the strategy of
ignoring the UTPM parameters in the navigation solution.

Figure 9 shows a reduced sensitivity to Earth orientation errors when the UTPM parameters are

estimated, along with the trajectory parameters, in the navigation filter. This improvement is large for
the cases with poorest UTPM accuracy. The improvement is coupled to the assumptions about the level

of nongravitational forces affecting the spacecraft. If there were no nongravitational forces acting on the

spacecraft, or if the nongravitational forces were perfectly known, then the spacecraft would provide a
reference against which Earth orientation changes could be measured using Doppler data. If there were

large nongravitational forces affecting the spacecraft that are not well known, then the spacecraft could not-
be used as a reference against which Earth orientation changes could be measured. Because the Pathfinder

spacecraft will be a simple, spinning platform, the nongravitational forces affecting it are assumed here
to be well modeled. Because of this assumption, when the Earth orientation uncertainties increase

beyond a certain level, the navigation filter begins to rely on the assumed level of nongravitational force

uncertainties and can improve upon the a priori knowledge assumed for Earth orientation parameters.
This would not be true for a spacecraft with larger uncertainties in the nongravitational force model.

Because of the different encounter geometry, the covariance analysis results for the Type II trajectory

are quite different from the Type I trajectory. No attempt was made to quantify the critical navigation
component, IBI, since the Type II trajectory will not be used for Mars Pathfinder and the choice of the

targeted point for this study was arbitrary. The B-plane eomponentuncertainties should be interpreted
in such a manner that the critical component could be more like B • R or B - T, depending on the choice
of the targeted point.

Figure 10 shows the navigation uncertainty from all error sources for the Type II trajectory with the

exception of Earth orientation calibration error. The LTOF uncertainty is about a factor of six larger for

the Type II case than for the Type I case because the approach direction is not aligned with the Earth-

Mars direction. The scale in Fig. 10(c), 3 s, corresponds to a position uncertainty of about 12 km due to

the approach velocity u_-co.__n _,1,/"--/_o............Nongravlfntinnal forces., Mars ephemeris_ uncertainty, and data noise

are seen to be the dominant sources of error (other than Earth orientation) for the other components.

The B • @ component is most closely aligned with the Earth-Mars direction at encounter and, hence, is

the best determined component. The uncertainty in B - R (_declination) shown in Fig. 10(a) for the

Type II trajectory is less sensitive to ranging calibration errors and more sensitive to station location

errors than is the Type 1 case. This is a reflection of the large, negative encounter declination enabling
Doppler data to influence the determination of declination.

Figure 11 shows the contribution of Earth orientation calibration errors to the orbit determination un-

certainty for the Type II trajectory. The B • R uncertainty is much more dependent on Earth orientation

than is the Type I case. This sensitivity is related to the determination of declination by the Doppler

data, which are sensitive to Earth platform errors. The sensitivity of declination to Earth orientation can

be seen to be principally due to polar motion errors since cases with identical polar motion uncertainties,
but different UT1 uncertainties, have the same effect on the B • R uncertainty. The B • T compo-

nent shows some sensitivity to UT1 errors since the T direction is mostly in the Earth-Mars direction

but partly in the direction of increasing right ascension. UT1 errors have a larger effect on LTOF since the
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Fig. 10. Relative contributions of the principal error sources (other than Earth orientation) to the total
orbit determination uncertainty for a Mars Pathfinder Type II approach scenario.^Uncertainties are shown in
B-plan_coordinates with respect to the mean Earth equator of 2000: (a) B • R (-declination) uncertainty,
(b) B • T (-right ascension) uncertainty, (c) LTOF (time of encounter) uncertainty, and (d) uncertainty in the
magnitude of the impact parameter, IBI.

approach direction is more closely aligned with the right ascension direction. The nominal TEMPO Earth

orientation errors would be one of the larger sources for error in B - T and a moderate source of error in

B • R for this trajectory. The GPS-based cases contribute less to the navigation uncertainty in B • R and

B • I" than the nominal TEMPO case, but result in large errors in LTOF.
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Fig. 11. Relative contributions of Earth orientation for a Mars Type II approach trajectory. Ul_certainties are
shown in B-plane £oordinates with respect to the mean Earth equator of 2000: (a) B ° R (-declination)
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VII. Summary and Conclusions

A numerical assessment measuring the sensitivity of spacecraft delivery errors to the accuracy and
timeliness of Earth orientation calibrations was completed for two interplanetary cruise scenarios derived
from the Mars Pathfinder mission set. This study was motivated by the fact that, to date, errors in Earth
orientation (i.e., precession/nutation, polar motion, and variation in Earth rotation rate) are still capable
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of contributing significantly to the composition of the noise signature on radio metric data acquired by

the DSN. These errors can thus lead to degraded spacecraft navigational accuracies if not adequately
calibrated.

Results from the navigation sensitivity analysis concurred with the expected outcome that not only

is Earth orientation calibration performance important in determining spacecraft navigational accuracy,

but so is the timeliness of the calibration file deliveries. Based on the analyses presented in this article,

the current best DSN Earth orientation calibration performance provided by the TEMPO activity yielded

a contribution of about 39 to 64 percent of the total navigation error budget for the critical component

of the nominal Mars Pathfinder Type I trajectory, depending o11 the navigation filtering strategy being

used. These results assumed line-of-sight data types (i.e., two-way Doppler and range) were used in

the navigation process. Use of differential data types could reduce the sensitivity to Earth orientation
calibration errors.

Variations on the current DSN calibration method representing delayed TEMPO deliveries of the
calibration files as well as delayed deliveries without use of AAM data were also assessed. Results for

these cases showed that Earth orientation calibration errors dominated the total navigation error budget,

irrespective of the trajectory type. Furthermore, a very large penalty was paid when the Earth orientation

parameters were not adjusted in the navigation solution.

With the advent of GPS-based ground observations as a viable Earth orientation calibration system and

the ongoing effort to reduce the loading on the DSN 70-m subnetwork, new Earth orientation calibration
techniques are being devised. Statistical models representing examples of these calibration strategies

were constructed and their effect on the Mars Pathfinder navigation delivery error assessed. In the

(optimistic) case where the current level of TEMPO calibrations (2 per week) was used in concert with
daily GPS-based calibrations, the influence of UTPM calibration errors on overall navigation performance

was, as expected, minimal. Under the current environment where there is continual pressure to reduce

tile number of DSN-based VLBI observations (again, addressing the 70-m antenna loading issue), this

calibration strategy will probably not be attainable operationally.

A sensitivity analysis was also performed for an operationally more realistic Earth orientation calibra-

tion strategy in which GPS-based calibrations were used as the principal means of generating frequent

(daily) Earth orientation calibration information, augmented with periodic VLBI-based measurements

(_-,2 per month). (The GPS system alone cannot determine all components of Earth orientation and,

thus, requires au external calibration source such as VLBI.) In this assessment, analysis results suggest

that the contribution of UTPM errors to the total navigation error budget for the critical component
of the nominal Mars Pathfinder trajectory lies somewhere between 43 and 55 percent, depending on the

accuracy of the GPS deliveries. These results assumed that the UTPM parameters were adjusted in the
navigation solution. The true level of accuracy will depend, of course, on the actual system implemented.

Since the GPS calibration system is in the early stages of development, the statistical characteristics

of the calibrations are not yet well determined. With the noise levels assumed for this analysis, the

GPS-based Earth orientation calibrations appear to offer an advantage over the current TEMPO-based

calibrations in that they relax the need for the navigation process to properly model the time-varying

behavior of UTPM calibration errors. In addition, the proposed system is designed to provide rapid

processing and timely deliveries of the calibration files to the flight projects. The overall performance
(accuracy) levels, as evidenced in this study, were at or near the same level as the current DSN capability,

lmrhaps only slightly better in some cases.
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Appendix A

Sensitivity of Planetary Orbiter Navigation to

Earth Orientation--A Case Study for
Differential Data Types

For a spacecraft in orbit about another planet, Doppler data can be used to determine all components

of its orbit except for a few particular geometries [23]. The accuracy with which the orbit is determined

by means of Earth-based Doppler tracking depends upon several factors, including data accuracy and the

accuracy of the spacecraft force models, particularly those due to the planet's gravitational field. Using

the Magellan radar mapping mission of Venus as an example, the uncertainty of the gravity field was

such that the expected orbit uncertainty during the prime mission (for daily orbit solntions) was about

15 km with two-way Doppler tracking alone [24]. Mars Global Surveyor (MGS) plans to achieve much
better accuracy by solving for an improved gravity field based on an initial data set. The MGS strategy

could not have been utilized for Magellan since the gravity field of Venus could not be sampled with a
few weeks of radio metric data because of Venus' slow rotation rate.

The orbit determination accuracy achievable with Earth-based Doppler tracking in a two-way coherent

mode is very insensitive to Earth orientation errors since the dominant signature in the Doppler data is

due to the orbit of the spacecraft about the planet. This is in contrast to planetary approach navigation,

where much of the information content in Doppler tracking data is influenced by the Earth's rotation.

To first order, Doppler data are insensitive to a rotation about the line of sight from the Earth-based

tracking station to the spacecraft,. The rotation about the line of sight can be determined by changes in

the geometry due to the relative orbits of the Earth and the target planet about which the spacecraft is

orbiting. Rotation about the line of sight is measured by the node angle, f_, with respect to the plane of

the sky, which is defined in Fig. A-1 as the plane normal to the Earth spacecraft direction. In the figure,

the orbit inclination, i, is the angle between the normal to the spacecraft orbit and the Earth spacecraft.

direction; the line of nodes is the intersection of the orbit plane and the plane of the sky; the node with

respect to the plane of the sky, f_, is measured in the plane of the sky from a reference direction to the line

of nodes; and the argument of periapsis, co, is the angle between the line of nodes and periapsis measured

in the orbit plane.

"r(TOWARDEARTH)

NORMALTO ORBI"

LINE OF APSIDES

&
LINEPARALLEL
EARTH'SEQUATOR

3DES

Fig.A-1. Planetaryorbiter geometry.
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At times, the desired orbit accuracy is greater than what can achieved with two-way Doppler tracking

alone. In the case of Magellan, the desired orbit accuracy was about 1 km for purposes of aligning

radar images. This level of accuracy was better than what could be achieved using Doppler data alone.

Differential data types such as differenced one-way Doppler (DOD), delta-differenced one-way Doppler

(ADOD), or two-way minus three-way Doppler (2DM3D) have been shown to improve orbit determination

accuracy [26]; the latter was used successfully for Magellan operations [27]. These differential data

types are sensitive to Earth orientation errors. An assessment of the characteristic sensitivity to Earth

orientation errors for planetary orbiter navigation when using differential data types is described below.

The planetary orbiter scenario is based on the radar mapping phase of the Magellan mission.

Consider the geometry drawn schematically in Fig. A-2. The plane of the figure is taken to be the

Earth's equatorial plane. (Note that Venus need not lie in the equatorial plane for the analysis to be
valid.) Two stations at different complexes are located at the ends of the baseline vector with equatorial

projection, be. For illustration purposes, an orbit is considered with the orbit plane perpendicular to
the Earth's equatorial plane and with the normal to the orbit plane perpendicular to the Earth-Venus
direction.

y

t__p. x EARTH

_, , , 0

Fig. A-2. Differenced Doppler measurement geometry used in the case study.

DOD measurements are formed by differencing the one-way Doppler signals received by two tracking

stations separated by large distances [26]. These measurements give the difference in spacecraft line-of-

sight velocity as observed by the two stations. (The 2DM3D measurements exhibit the same information

content except for a slight difference resulting from use of a DSN uplink signal rather than the spacecraft

onboard oscillator as the reference frequency.) For spacecraft at interplanetary distances, the DOD
observable can be approximated as

r r

where b is the baseline vector between the two tracking statiu,b, r is the vector from the ce_nt_r of the

Earth to the spacecraft with magnitude r, ÷ is the rate of change of distance between the Earth and

the spacecraft, v is the spacecraft velocity vector with magnitude v, and ¢0e is the Earth's rotation rate

vector. By considering a DOD measurement for this special case, at the time when the spacecraft velocity

is parallel to the Earth's pole, the DOD observable can be further approximated as

DOD _ lvybe cos H + lv_bz + webe cos H (A-2)
r r

where vy is the component of the spacecraft velocity in the equatorial plane and perpendicular to the

Earth-Venus direction (and nominally zero at the measurement time), be is the equatorial baseline length,
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vz is tile component of the spacecraft velocity parallel to the Earth's pole, bz is the length of the projection
of the baseline length onto the pole direction, and H is the hour angle between the baseline and the

spacecraft. A rotation of the orbit about the Earth-Venus line by an angle 6f_ changes vy from zero to
v6ft, which is directly observable in the DOD measurement. If the measurement occurred earlier (or later)

in the orbit, where the spacecraft velocity vector was along the spacecraft Earth direction, there would

be no change in spacecraft velocity for a change in the orbit node. In this case, tile DOD measurement

would not be useful. The importance of performing differenced Doppler measurements at optinmm times

has been well documented in the literature (see, e.g., [25]).

An error ill UT1 introduces a bias in tile hour angle, H, and, hence, in the DOD measurement.

This can affect the determination of the spacecraft node angle. A change in the measurement due to a

calibration error, _UT1, is approximately given by

6DOD _ -b_w_ sin H6UT1 (A-3)

This change will cause an error to be inferred in tile rotation about the line of sight by an amount

1" 2
6f_ _ -w_ tan H 6UT1 (A-4)

For DSN baselines (Goldstone Madrid and Goldstone Canberra), H can vary from about -30 to +30

deg, outside of which the spacecraft will fall below the horizon of one of the complexes. DSN l)aselines

have a mean equatorial length of about 8000 kin. For the worst case where H = 30 deg, a I-ms error
in UT1 will bias the DOD measurements by about 0.02 mm/s. For an orbiter characteristic of Magellan

during its mapping phase, with all average orbital velocity, v of about 5.5 kin/s, and a line-of-sight
distance of 1 AU, a 1-ms timing error in UT1 would lead to a node error of up to 0.08 mrad. With a

semimajor axis of 10,000 kin, this corresponds to an orbit error of about 0.8 kin. (Since this is comparable
to the desired orbit accuracy for Magellan, it was necessary to have UT1 calibrated with submillisecond

accuracy in order to support the generation of daily orbit determination solutions.)

In general, the maximum sensitivity of the differenced Doppler data to Earth orientation errors is of

nearly the same magnitude as for the special case studied here. Sensitivity to Earth orientation errors

can be an order of magnitude smaller if the data are acquired at times where the baseline hour angle is

near zero and the spacecraft velocity at that time is in a direction where the data are sensitive to the

spacecraft node. The size of the orbit errors also depends on (among a number of other factors) the shape

of the orbit, the uncertainty in the gravity field, and the amount of Doppler data to be used ill the "fit"

(i.e., the data filtering process).
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Appendix B

Definition of Aiming Plane (B-Plane) Coordinates

Planetary approach trajectories are typically described in aiming plane coordinates, often referred to

as "B-plane" coordinates (see Fig. B-l). This coordinate system was originally conceived to simplify the

targeting of a hyperbolic flyby trajectory and is defined by three orthogonal unit vectors, S, T, and R,

with the system origin taken to be the gravitational center of mass of the target planet [27]. The S is

directed parallel to the incoming spacecraft asymptotic velocity vector relative to the target planet, while

is normally specified to lie in either the ecliptic plane (the mean plane of the Earth's orbit) or the

equatorial plane of the target planet. 27 In addition, T is directed perpendicular to S. The unit vector
A A A A

completes an orthogonal triad with S and T, thus, R = S × T.

The aim point for a planetary encounter is defined by the impact parameter, B, which approximates

where the point of closest approach would be if the target planet had no mass and did not deflect the flight

path. The impact parameter B is directed perpendicular to S; therefore, it lies in the W - R plane. To

gain insight into targeting accuracy, orbit determination errors are often characterized by the 1-sigma or

3-sigma uncertainty in the respective "miss components" of B, namely, B. R and B.T. These quantities

are analogous to elevation and azimuth when specifying tile impact point for terrestrial targets.

The time from encounter is defined by the linearized time of flight (LTOF), a quantity which is a

measure of the "time-to-go" from the current spacecraft position to the intersection of its asymptotic

flight path and the aiming plane. LTOF provides a convenient time-to-go parameter because LTOF is

not affected by changes in the B • R and B • T miss components. 2s Orbit determination errors are also

characterized by the 1-sigma or 3-sigma uncertainty in LTOF.

In lieu of using B • R and B • T uncertainties to measure targeting accuracy, a 1-sigma or 3-sigma

B-plane dispersion ellipse (also shown in Fig. B-l) is often used. The semimajor (SMAA) and semiminor

(SMIA) axes of tile dispersion ellipse are related in quadrature to the uncertainties of B • R and B • T.

The angle OT gives the angle clockwise from T to the SMAA.

TARGET PLANET
/

[ -_. INCOMING ASYMPTOTE
AIMING PLANE _ I jS DIRECTION

(B-PLANE) _----'-i _ J,_

.__/_ IYPERBOLIC PATH OF

f _ SPACECRAFT

TRAJECTORY _ \ J_ // _f_'_'n_ll_'T"

PLANE _/ " -- '_T

DISPERSION ELLIPSE _ R

DISPERSION ELLIPSE
ORIENTATION

Fig. B-I. The aiming plane (B-plane) coordinate system.

27 For the analysm presented in this article, W w_ specified to lie in the Earth's equatorial plane.

28 R. A. Jacobson, "Linearized-Time-of-Flight Revisited," JPL Engineering Memorandum 391-680 (Revised) (internal doc-

ument), Jet Propulsion Laboratory, Pasadena, California, September 22, 1975.
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Wind data measured during a field experiment were used to verify the analytical

model of wind gusts. Good coincidence was observed; the only discrepancy occurred

for the azimuth error in the front and back winds, where the simulated errors were

smaller than the measured ones. This happened because of the assumption of the

spatial coherence of tile wind gust model, which generated a symmetric antenna

load and, in consequence, a low azimuth servo error. This result indicates a need

for upgrading the wind gust model to a spatially incoherent one that will reflect tile

real gusts in a more accurate manner.

In order to design a controller with wind disturbance rejection properties, tile

wind disturbance should be known at tile input to the antenna rate loop model. The

second task, therefore, consists of developing a digital filter that simulates the wind

gusts at the antenna rate input. This filter matches the spectrum of the measured

servo errors, hi this scenario, the wind gusts are generated by introducing white

noise to the filter input.

I. Introduction

The steady-state wind pressure distribution on scaled antenna models was measured during wind

tunnel experiments, 1'2'3 and their validity for actual field antennas was unknown. Wind field data

collected recently at the DSS-13 antenna were used to evaluate the accuracy of the steady wind pressure

measured in the wind tunnel [2]. A similar evaluation can be done for the time-varying part (gusts) of

the wind.

The wind gust analytical model, as developed in [1], is used to simulate the pointing errors of the DSN

antennas. The model was developed using the wind tunnel data (as in Footnotes 1 through 3) and the

Davenport spectra, but its accuracy was unverified. In this article, the wind measurements of servo errors

obtained on January 24, 1994, at the DSS-13 antenna site, c.f. [2], were compared with the simulated

servo errors. In most cases, the comparison shows satisfactory coincidence between the measured and the

sinmlated data.

t N. L. Fox and B. Layman, Jr., "Preliminary Report on Paraboloidal Reflector Antenna Wind _ISmnel Tests," JPL Interoffice

Memora,ldum CP-3 (internal document), Jet Propulsion Laboratory, Pasadena, California, 1962.

2 N. L. Fox, "Load Distributions on the Surface of Paraboloidal Reflector Antennas," JPL Interoffice Memorandum CP-4

(internal document), Jet Propulsion Laboratory, Pasadena, California, 1962.

:_tt. B. Blaylock, "Aerodynamic Coefficients for a Model of a Paraboloidal Reflector Directional Antenna Proposed for a

JPL Advanced Antenna System," JPL Interoffice Memorandum CP-6 (internal document), Jet Propulsion Labo,'atory,
Pasadena, California, 1964.
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Recently,the linearquadraticGaussian(LQG)controllerfor theDSS-13antennawasdesignedand
tested(see[4]). Thismodel-basedcontrollerusedtheidentifiedDSS-13antennamodelbasedon field
experiments[3].Thisantennamodeldoesnot includethewinddisturbances,whicharenecessaryforthe
designof animprovedLQGcontrollerwithwinddisturbancerejectionproperties.Forthispurpose,the
wind-measureddatawereusedto createthewinddisturbanceinputintotheantennarate-loopmodeland
will serveasabasefor thedesignof animprovedcontrollerwithwinddisturbancerejectionproperties.

II. Evaluation of the Analytical Model

In the field experiment, the servo errors due to wind gusts were measured for the elevation angles from

11 to 89 deg and for the the yaw angles (antenna azimuth position with respect to the wind direction)

from 0 to 360 deg. The servo errors from the analytical model are available for elevation angles of 60 and

90 deg and for yaw angles of 0 (front wind), 90 (side wind), and 180 deg (back wind). The results are

obtained in the form of the standard deviations of the measured servo error, typically of the length of

8000 samples collected at a sampling time of 0.02 s. The results of field measurements and simulations

are shown in Figs. 1 through 4, where "x" denotes field data and "o" denotes the analytical results. For

the elevation servo error measurements, there were multiple collections of the field data for each elevation

position. Thus, in this case, the maximal and minimal root-mean-square sums of the measured error are

plotted with the gray area between them (see Figs. 1 through 3). For the azimuth errors, there was one

collection of data, so the field errors do not include the gray area.

The elevation servo error plots indicate that the analytical error lies within the gray area of the

rain-max measurements, while the results of the azimuth error show very close relationship between the

measured and simulated standard deviations of the servo error for the side wind and a discrepancy for

the front and back winds. In the latter case, the analysis underestimates the error because of the symmetry
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Fig. 1. Standard deviation of the elevation encoder output due to
40-km/h wind front gusts.

I

lOO

n'Z" 4--

,,,o

z>_
uJ£3_

t-<
<£3 1
>Z

=,,<
"'_n 0

I t I i I ! ! I

x MEASURED

o FROM ANALYSIS

lO
t I I f I I I I

20 30 40 50 60 70 80 90 lOO

ELEVATION ANGLE, deg

Fig. 2. Standard deviation of the elevation encoder output due to
40-km/h wind side gusts.

31



ccz"

z >

<D
>z
w<

i i I i I i I i
x MEASURED

0 FROM ANALYSIS

I I I I I I
10 20 30 40 50 60 70 80 90 1O0

ELEVATION ANGLE, deg

Fig. 3. Standard deviation of the elevation encoder output due to
40-km/h wind back gusts.

0.5

o 04
E 0.3

T_
_0 0.2

< 0.1

0.0

x MEASURED

o SIMULATED

I _ I I I o I
-100 -50 0 50 100 150 200 250

YAW ANGLE, deg

Fig. 4. Standard deviation of the elevation encoder output due to
32-km/h wind gusts.

and the coherence of the wind loading model. In reality, wind gusting is significantly unsymmetrical and

is spatially uncorrelated. This discrepancy can be corrected by introducing an incoherent wind model

using cross-spectra (see [5]).

III. Wind Gust Model Derived From the Field Data

LQG controllers developed for the DSN antennas (see [4]) are based o21 the antenna model obtained

from the field testing rather than on its analytical model. In order to evaluate the controller wind distur-

bance rejection properties as well as to improve these properties, one has to develop a wind disturbance

model compatible with the antenna-identified model.

The antenna rate-loop model was identified for the azimuth and elevation loops separately. The cross-

coupling between the azinluth and elevation axes, and vice versa, was low and was, therefore, ignored.

The input to the model is the rate command, and the output is the encoder reading. The rate command

creates difficulties in implementation of the analytical wind gust model because the wind is modeled as

pressm'e at the antenna structure and is not readily transformed into the rate command disturbance, but

this can be done by using the measured servo errors due to the wind gust disturbance.

Further, only the antenna model in azinmth is considered (the elevation model is developed similarly).

The filter at the rate input will model the wind gusts (see Fig. 5). The white noise disturbance, w(t),

of unit intensity at the input to the wind filter is assumed. The filter transfer function, G(s), is to be

determined. The filter output, w,.(t), adds to the rate command, and it serves as the wind gust model.
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Fig.5. Wind filter configuration.

Let the servo error due to the wind gusts be e(t) and its spectrum be e(co). The servo error due to

disturbance t_(t) is es(t), and its spectrum is es(cz). The filter transfer function, G(co), is determined such

that the difference between the simulated and the measured power spectrum is minimized as follows:

G(co) such that IIe(_) - es(_) It is minimal (1)

The filter that satisfies Condition (1) is called the wind filter.

Let G_(co) be the antenna rate-loop transfer function from the rate input to the encoder servo error.

Then the simulated error due to wind gusts is obtained as

_,(_) = c,(_)c(_)_(_) (2)

In Eq. (2), the spectrum w(oa) is constant (independent of frequency), and the transfer function G_(w)

is dominated by the antenna resonance frequencies. In this case, the magnitude of the filter transfer

function can be assumed to be a smooth curve in the form of a shaped integrator, that is,

k (Tls + 1) 2 (3a)
G(s) = s (T2s + 1)(Tas + 1) 2

where the time constants ate

1
T1-

2re f,

1/T2 - 2_/2

1

T3 - 2_f3

(ab)

and fl = 2.2 Hz, f2 = 7.0 Hz, and fa = 12.0 Hz are the frequencies where the magnitude of the in-

tegrator k/s is shaped. The frequencies fl and f2 determine the bandwidth of resonance frequencies

of the antenna, and the frequency fa is the cut-off frequency for the wind disturbances. In this trans-

fer function, the only unknown parameter is the gain, k. The plot of G(w) is shown in Fig. 6 for k = 1. The
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choice of the transfer function shape as in Eq. (3) was done after the investigation of the more general

case, where G(s) was a rational function of polynomials of order 5 or less. The perfor,nance errors for

the polynomials were ahnost the same as for G(s) in Eq. (3).

The wind model for the azimuth rate loop was determined for two antenna elevation positions: 60 and

11 deg. For each elevation position, the wind from the front, side, and back was considered. The spectra

of the azimuth encoder output, measured and simulated, are shown in Fig. 7 for an elevation angle of

60 (leg and a wind direction from tile back of the antenna. The measured spectrum shows two resonances,

at 1.7 and 4.2 Hz, and the spectrum from si,nulations has an additional resonance peak at 3.1 Hz. The

spectra are coincidental at the first three frequencies. The time series of measured and silnulated encoder

outputs are shown in Figs. 8(a) and 8(b), respectively. They show the similarity; the difference l)etween

their standard deviations was less than 7 percent. The gain, k, in this case was 0.0095.
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Fig. 7. Azimuth encoder spectra.

Similar results were obtained for other cases. Gain k for an ll-deg elevation angle was as follows:

lh'ont wind Side wind Back wind

0.0075 0.0079 0.0075

Gain k for a 60-deg elevation angle was as follows:
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Frontwind Sidewind Backwind

0.0095 0.0096 0.0092

Thetablesshowthat foragivenelevationanglethegainsforfront,back,andsidewindsarealmostthe
same.Therefore,thewindfilter is independentofwinddirection;however,it dependson theantenna
elevationangle.
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Fig. 8. Azimuth encoder error due to 32-km/h wind gusts from the back at a 60-deg elevation
angle: (a) measured and (b) simulated.

IV. Conclusions

The measured wind ua_''- at the _oo-_onee1 q _.._;_...............oro 1,_od to verifv, the analytical wind model. The

comparison showed that servo errors from the analytical model fall within the measured servo error

boundaries. However, for the front and back winds, the simulated azimuth errors were smaller than the

measured ones. This occurred because of the assumption of the spatial coherence of the wind gust model.

The coherence caused a symmetric antenna load and, in consequence, a low azimuth servo error. This

shortcoming indicates a need for upgrading the analytical wind model so that the spatially incoherent

wind gust model reflects the real gusts in a more accurate manner.

The measured wind data were also used to generate a new wind model more suitable for the design of

a control system with wind disturbance rejection properties. The wind filter was obtained for the antenna

azimuth model for different elevation angles and different wind directions such that the simulated servo

error is close to the measured one.
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Proper modeling of the Global Positioning System (GPS) satellite yaw attitude

is important in high-precision applications. A new model for the GPS satellite yaw

attitude is introduced that constitutes a significant improvement over the previously

available model in terms of efficiency, flexibility, and portability. The model is

described in detail, and implementation issues, including the proper estimation

strategy, are addressed. The performance of the new model is analyzed, and an

error budget is presented. This is the first self-contained description of the GPS

yaw attitude model.

I. Introduction

On June 6, 1994, the U.S. Air Force implemented a yaw bias on most Global Positioning System

(GPS) satellites. By January 1995, the implementation was extended to all the satellites except SVN 10.

The yaw bias was introduced as a way to make modeling of the yaw attitude of the GPS satellites

during shadow crossings possible [2]. The yaw attitude of a biased GPS satellite during eclipse seasons is

markedly different from the yaw attitude of a noneclipsing satellite or from that of an unbiased satellite.

The yaw attitude of the GPS satellite has a profound effect on precise applications. Mismodeling the

satellite attitude can cause decimeter-level error in the positioning of ground stations with certain GPS-

1.... A _-_i,_; ....... _t sk .... marlin cMibrations. This required the development of a special attitude model

for biased GPS satellites. In addition to the yaw bias effects, that model also corrected other mismodeling

that existed in the old model, namely, that of the "noon turn."

The first attitude model written for the biased constellation was made fleely available to the CPS

comnmniLy in ,1__ r___. of a ................................. . .tnu IuJ ,1, _11_;_ ,,f I_('ID_pI_ h N! ra,_tino_ [1]. For simDlicitv, this model is referred to

in this article as GYM94 (for GPS Yaw Attitude Model--94). GYM94 was implemented in JPL's GIPSY

software and, in various forms, in other high-precision geodetic packages. The model was successfully

used within JPL's routine processing of daily GPS orbits and ground station coordinates for the Inter-

national Global Positioning System Service (IGS). The model had some drawbacks, though. Mainly, it

was cumbersome to implement and very demanding of computer resources, namely, memory and central

processing unit (CPU) time.

In this article, we describe a new model for the GPS satellite attitude, referred to as GYM95. The

model is analytic, in contrast to the numerical nature of GYM94, which required sequential processing

in time. A time series of yaw rates estimated by the routine GPS processing at JPL will be analyzed to

demonstrate the need to estimate the yaw rates.
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II. Background

The analysis that led to the implementation of the yaw bias on GPS satellites is described in Bar-Sever
et al. [2]. A general description of the first yaw attitude model can also be found there. For completeness,

we give here a brief summary.

The nominal yaw attitude of a GPS satellite is determined by satisfying two constraints: first, that
the navigation antennas point toward the geocenter and, second, that the normal to the solar array

surface will be pointing at the Sun. To meet these two conditions, the satellite has to yaw constantly.

The resulting yaw attitude algorithm is singular at two points--the intersections of the orbit with the

Earth-Sun line. At these points, the yaw attitude is not single-valued, as any yaw angle allows optimal
view of the Sun. In the vicinity of these singular points, the yaw rate of tile spacecraft, required to

keep track of the Sun, is unbounded. This singularity problem was largely ignored prior to the release of

GYM94. While this mismodeling problem could be fixed easily through the realization of a finite limit on

the spacecraft yaw rate, a bigger problem existed that could only be addressed by changing the attitude

control subsystem (ACS) on board the spacecraft. The ACS determines the yaw attitude of the satellite

by using a pair of solar sensors mounted on the solar panels. As long as the Sun is visible, the signal from

the solar sensors is a true representation of the yaw error. During shadow, in the absence of sunlight, the

output from the sensors is essentially zero and the ACS is driven in an open-loop mode by the noise in

the system. It turns out that even a small amount of noise can be enough to trigger a yaw maneuver at

maximum rate. To make it possible to model the yaw attitude of the GPS satellites, the ACS had to be

biased by a small but fixed amount. Biasing the ACS means that the Sun sensor's signal is superposed

with another signal (the bias) equivalent to an observed yaw error of 0.5 deg (the smallest bias possible).

As a result, during periods when the Sun is observed, the satellite yaw attitude will be about 0.5 deg in

error with respect to the nominal orientation. During shadow, this bias dominates the open-loop noise

and will yaw the satellite at fllll rate in the direction of the bias. Upon shadow exit, the yaw attitude of

the satellite can be calculated, and the Sun recovery maneuver can also be modeled.

GYM94 accounted for the yaw bias as well as the limit on the yaw rate. It computed the satellite yaw

angle through numerical integration of a control law. Its output was a large file containing the yaw attitude

history and, optionally, partial derivatives of the yaw attitude with respect to the yaw rate parameter.

This file could later be interpolated to retrieve a yaw angle at the requested time. This process required

relatively large amounts of computer memory and CPU time. In addition, the model's complex control

law--a simulation of the onboard attitude determination algorithm--did not allow much physical insight

into the problem and was hard to tune. To overcome all these deficiencies, the GYM95 model was created.

GYM94 was used in studies of GPS calibration for the DSN since September 1994, and the design of the

new attitude model drew on the experience accumulated with GYM94. GYM95 is simple enough to be

described by a small set of formulas, allowing easy implementation in different computing environments.

Its analytic nature, as opposed to the numerical nature of GYM94, allows queries at arbitrary time points

with great savings in computer resources. Finally, it allows more flexibility in tuning and adapting it to

the changing conditions of the GPS constellation.

III. The New Yaw Attitude Model (GYM95)

A. Overview

The yaw attitude of a GPS satellite can be divided into four regimes: nominal attitude, shadow

crossing, postshadow maneuver, and noon turn. Most of the time (and for noneclipsing satellites all the

time), the satellite is in the nominal attitude regime. The postshadow maneuver begins immediately after

emerging from the Earth's shadow and lasts until the satellite has regained its nominal attitude. This
phase can l_t from 0 to 40 rain. The noon-turn maneuver does not occur until the beta angle goes below

about 5 deg and can last between 0 and 40 min.
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We will start by defining a few important terms in Table 1 and the notation used, and then describe the

yaw attitude during each of the four regimes, including the governing formulas. Finally, we will describe

how to tie all the regimes together into one functional model and analyze any built-in errors.

Table 1. Definition of terms.

Term Definition

Orbit midnight

Orbit noon

Orbit normal

Sun vector

Beta angle

Orbit angle

Yaw origin

Spacecraft-fixed z-axis

Nominal spacecraft-fixed x-axis

Spacecraft-fixed x-axis

Nominal yaw angle

Yaw angle

Yaw error

Midnight turn

Noon turn

Spin-up/down time

The point on the orbit furthest from the Sun.

The point on the orbit closest to the Sun.

The unit vector along the direction of the satellite's angular momentum, treating

the satellite as a point mass (equals position x velocity, where the order of

the cross-product is important).

The direction from the spacecraft to the Sun.

The acute angle between the Sun vector and the orbit plane. It is defined as

positive if the Sun vector forms an acute angle with the orbit normal and

negative otherwise.

The angle formed between the spacecraft position vector and orbit midnight,

growing with the satellite's motion.

A unit vector that completes the spacecraft position vector to form an

orthogonal basis for the orbit plane and is in the general direction of the

spacecraft velocity vector.

The direction of the GPS navigation antennas.

A unit vector orthogonal to the spacecraft-fixed z-axis

such that it lies in the Earth-spacecraft Sun plane and points in the general

direction of the Sun (note that this definition is not single valued when the

Earth, spacecraft, and Sun are collinear).

A spacecraft-fixed vector, rotating with the spacecraft, such that far

enough from orbit noon and orbit midnight, it coincides with the nominal

spacecraft-fixed x-axis. Elsewhere, it is a rotation of the nominal

spacecraft-fixed x-axis around the spacecraft-fixed z-axis.

The angle between the nominal spacecraft-fixed x-axis and the

yaw-origin direction, restricted to be in [-180,180]. It is defined to have a sign

opposite to that of the beta angle.

The angle between the spacecraft-fixed x-axis and the yaw-origin direction,

restricted to be in [-180,180], also termed "actual yaw angle."

The difference between the yaw angle and the nominal yaw angle, restricted

to be in [-180,180].

The yaw maneuver the spacecraft is conducting from shadow entry until it

resumes nominal attitude sometime after shadow exit.

The yaw maneuver the spacecraft is conducting in the vicinity of orbit noon

when the nominal yaw rate would be higher than the yaw rate the spacecraft is

able to maintain. It ends when tile spacec_aff_ Legumes nominal attitude.

The time it takes for the spacecraft to spin up or down to its maximal

yaw rate. The spacecraft is spinning down when it has to reverse its yaw rate.

The notation used is as follows:

= orbit angle

/3 = beta angle

E = Earth-spacecraft-Sun angle

b = yaw bias inserted in the satellite ACS
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B = actual yaw angle induced by b

= actual yaw angle

q2,_ = nominal yaw angle

t = cut'rent time, s

ti = time of shadow entry

te = time of shadow exit

tn = start time of the noon-turn maneuver

tl = spin-up/-down time

@_ = yaw angle upon shadow entry

q2e = yaw angle upon shadow exit

R = maximal yaw rate of the satellite

RR = maximal yaw-rate rate of the satellite

Angle units, i.e., radians or degrees, will be implied by context. Radians will usually be used in

formulas, and degrees will usually be used in the text. FORTRAN function names are used whenever

possible with the implied FORTRAN functionality, e.g., ATAN2(a,b) is used to denote arc-tangent(a/b)

with the usual FORTRAN sign convention.

B. The Nominal Attitude Regime

The realization of tile two requirements for satellite orientation mentioned above yields the following

formula for the nominal yaw angle:

tI,,_ = ATAN2(-TAN(13), SIN(#)) + B(b, _, #) (I)

where fl is the beta angle, # is the orbit angle, measured from orbit midnight in the direction of motion,

and B is the yaw bias (see below). It follows fl'om this formula that the sign of the yaw angle is always

opposite that of the beta angle.

Ignoring the time variation of the slow-changing beta angle leads to the following formula for the

yaw rate (there are simpler formulas, but they contain removable singularities that are undesirable for
computer codes):

li
ti,_ = TAN03 ) x COS(#) x SIN(//) 2 + TAN(/3)2 +/)(b, fl, #) (2)

where /i varies little in time and can safely be replaced by 0.0083 deg/s. Notice that the sign of the

nomiual yaw rate is the same as the sign of the beta angle in the vicinity of orbit nfidnight (It = 0).

The singularity of these two formulas when fl = 0 and # = 0,180 is genuine aud cmmot be removed.

C. The Yaw Bias

Like any medicine, the yaw bias has its side effects. Outside shadow, it introduces yaw errors that

are actually larger that 0.5 deg. To fully understand this, we have to describe the ACS hardware, which
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is beyond the scope of this article. The underlying reason is that the output of the solar sensor is

proportional not to the yaw error but to its sine, and it is also proportional to the sine of the Earth-

spacecraft-Sun angle, E. So, in order to offset a bias of b deg inserted in the ACS, the satellite has to

actually yaw B deg, where B is given by:

B(b,/3, p) = B(b, E) = ASIN 00175 x b
SIN(E)

(3)

The hardware-dependent proportionality factor is 0.0175, and the Earth spacecraft Sun angle, E, the

beta angle, /3, and the orbit angle, #, satisfy the following approximate relationship:

COS(E) = COS(/ ) x COS(p) (4)

and E is restricted to [0,180]. Equation (3) becomes singular for E less then 0.5013 deg. This has no
effect on the actual yaw because a small value of E implies that the spacecraft is in the nfiddle of a

midnight turn or a noon turn and is already yawing at full rate. The value of B does have a significant

effect, though, on the timing of noon-turn entry and on the yaw angle shortly before that. For example,

tbr E = 5 deg, which is the typical threshold value for noon-turn entry, the actual yaw bias is B _ 6 deg.

The bias rate, /), is given by

/)(b,/3, p) = -0.0175 x b x COS(E) x COS(/3) x SIN(p) x COS(B) x SIN(E) 3 (5)

The ACS bias, b, can be +0.5 deg or 0 deg. With few exceptions, to be discussed below, the bias is always

set to b = -SIGN(0.5,/3) since this selection was found to expedite the Sun recovery time after shadow
exit.

D. The Shadow-Crossing Regime

As soon as the Sun disappears from view, the yaw bias alone is steering the satellite. On most satellites,

the yaw bias has a sign opposite to that of the beta angle. To correct for the bias-induced error, the

satellite ham to reverse its yaw rate upon shadow entry. For those satellites with bias of equal sign to

u,_u of _'-_,e_'u_......... '_ t _ _......_ yaw _o,_or_ The bias is large enough to cause the satellite to yaw
at full rate until shadow exit, when the bias can be finally compensated. The yaw angle during shadow

crossing depends, therefore, on three parameters: the yaw angle upon shadow entry, _i, the yaw rate
upon shadow entry, _, and the maximal yaw rate, R. Let t_ be the time of shadow entry and let t be

the current time, and define

SIGN(R, b) - _'_ (6)
tl = SIGN(RR, b)

to be the spin-up/-down time. Then the yaw angle during shadow crossing is given by

= J" ',I,_+ _ x (t - t_) + 0.5 x SIGN(RR, b) x (t - t_) 2 t < t_ + ti
[ %+_Xtl+0.5xSIGN(RR, b) xt2_+SIGN(R,b)x(t-t_-tl) else

(7)

Using this formula, we avoid the singularity problem of the nominal attitude at nfidnight.
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E. The Postshadow Maneuver

This is the trickiest part of the yaw attitude model. The postshadow maneuver depends critically

upon the yaw angle at shadow exit. The ACS is designed to reacquire the Sun in the fastest way possible.
Upon shadow exit, the ACS has two options: One is to continue yawing at the same rate until the nominal

attitude is resumed; the second is to reverse the yaw rate and yaw at full rate until the nominal attitude
is resumed. In this model, we assume that the decision is based on the difference between the actual

yaw angle and the nominal yaw angle upon shadow exit, and we denote this difference by D. If te is the
shadow-exit time, then

( %(t_) - 02(t_))D = 02,_(t_)- 02(te) - NINT 36-0 x 360 (s)

and the yaw rate during tile postshadow maneuver will be SIGN(R, D).

Given the yaw angle upon shadow exit, the yaw rate upon shadow exit, SIGN(R, b), and the yaw rate

during the postshadow maneuver, we can compute the actual yaw angle during the postshadow maneuver

by using Eq. (7) with the appropriate substitutions. This yields

tl = SIGN(R, D) - SIGN(R, b) (9)
SIGN(RR, D)

{ 02(tc) + SIGN(R, b) x (t - t_.) + 0.5 x SIGN(RR, D) x (t - re) 2 t < tc + tl02= 02(tc)+SIGN(R,b)xtl+O.5xSIGN(RR, D) xt_ +SIGN(R,D)x(t-t_-t1) else

(10)

The postshadow maneuver ends when the actual yaw attitude, derived from Eq. (10), becomes equal to

the nominal yaw attitude. The time of this occurrence is computed in GYM95 by an iterative process

that brackets the root of the equation 02(t) = 02,(t), where the time dependence of 02,_(t) is introduced

by substituting # =/t_ + 0.0083 x (t - t_) in Eq. (1). This equation can be solved as soon as the satellite
emerges from shadow. Once the time of resuming nominal yaw is reached, the satellite switches back to

that regime.

F. The Noon-Turn Regime

The noon-turn regime starts in the vicinity of orbit noon, when the nominal yaw rate reaches its

maximal allowed value, and ends when the actual yaw attitude catches up with the nonfinal regime.

First, we have to identify the starting point, and this can be done by finding the root, t_, of the equation
_(t) = -SIGN(R,/3), where _,,(t) is the nominal yaw rate from Eq. (2). After the start of the noon

turn, the yaw angle is governed by Eq. (7), again with the proper substitutions. This yields

02 = 02,_(t,_) - SIGN(R, _) x (t - t,,) (11)

The end time is found by the same procedure that is used to find the end time of the postshadow
nlaneuver.

G. The Complete Model

Satellite position and velocity, as well as the timing of shadow crossings, are required inputs to GYM95.

The model is able to bootstrap, though, if these input values are unavailable far enough into the past.

For example, if the satellite is potentially in the postshadow regime upon first query, there is a need to

know the shadow-entry time so that all the inputs to Eqs. (9) and (10) be known. If this shadow-entry
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time is missing from the input, the model can compute it approximately, as well as the shadow-exit time.

Once all the timing information is available, yaw angle queries can be made at arbitrary time points. The

model will decide the relevant yaw regime and compute the yaw angle using the correct formula. Given

the above fornmlas, it is an easy matter to compute the partials of the yaw angle with respect to any

parameter of the problem, the most important of which is the maximal yaw rate, R.

H. Model Fidelity

The fidelity of the model is a measure of how accurately it describes the true behavior of the satellite.

This is hard to measure because there is no high-quality telemetry from the satellite and because the

estimated value of the main model parameter, namely, the yaw rate, depends on many other factors beside
the attitude model itself: data, estimation strategy, and other models for the orbit and the radiometric

measurements. Nevertheless, based on the experience accumulated thus far with this model and its

predecessor, GYM94, it is possible to come up with an educated guess of the inaccuracy of GYM95.

The nominal attitude regime is believed to be very accurate. The only source of error is mispointing

of the satellite, which is poorly understood and relatively small (of the order of 1 deg around the pitch,

yaw, and roll axes). Compensations for the dynamic effect of this error source are discussed in [3] and

[4], where they are treated, properly, within the context of the solar pressure model.

Modeling the midnight turn accurately is difficult. Inherent uncertainties like the exact shadow-entry

and -exit times are a constant error source. Inaccuracies in shadow-entry time are more important than

inaccuracies in shadow-exit time because errors in the former are propagated by the model throughout the
midnight-turn maneuver. In contrast, error in the shadow-exit time will affect the postshadow maneuver

only. Either way, the inaccuracy will be manifested through a constant error in the yaw angle, something

that can be partially compensated through the estimation of the yaw rate. The length of the penumbra

region is usually about 60 s. Sometime during this period, the yaw bias kicks in. GYM95 puts that time

midway into penumbra. The maximum timing error is, therefore, less than 30 s. A worst-case scenario,

ignoring the short spin-up/-down period and using a yaw rate of 0.13 deg/s, will give rise to a constant

yaw error of 30 x 0.13 _ 4 deg throughout the midnight turn. A more realistic estimate is 3 deg, even

before applying yaw rate compensation, after which the rms error will remain the same, but the mean is

expected to vanish. Another error source is the uncertainty in the value of the maximal yaw-rate rate,

RR. This parameter is weakly observable and, therefore, hard to estimate. The nominal value used in

GYM95 is 0.00165 deg/s 2 for Block IIA satellites and 0.0018 deg/s 2 for Block II satellites, and it should

be at least 70-percent accurate. The long-term effects of a yaw-rate rate error can be computed from the

second part of Eq. (7) as

• (RR) = _ x SIGN(R, b) - 0.5 x _ - 0.5 x SIGN(R, b) 2

sign(RR, b)

A worst-c_e scenario assumi__!g _ = -SIGN(R, b) = 0.13 and 30-percent error in the yaw-rate rate would

give rise to a yaw error of about 5 deg. These assumptions also imply a very short shadow duration so

the error will not be long lasting. For long shadow events, _i _ 0, and the resulting yaw error is about

1 deg. Again, this error can be partially offset by estimating the yaw rate.

The main error source for the noon turn is the timing uncertainty of the onset of the maneuver. This

uncertainty is not expected to be larger than 2 rain. A 2-min error will cause a constant yaw error of about

15 deg, assuming a yaw rate of 0.13 deg/s. The relatively short duration of the noon turn diminishes

somewhat the effects of such a large error. Estimating the yaw rate will decrease the error further.

The value of the yaw rate is not considered here as an error source. Any nominal value stands to be

at least 10 percent in error (see below). Since errors due to yaw rate grow in time, this parameter must
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be estimated or, alternatively, a previously estimated value should be used. For example, an error of

0.01 deg/s in the yaw rate will give rise to a 30-deg error in yaw at the end of a 50-min shadow event.

Although unlikely, errors from different sources can add up. In that case, the maximal error for each

regime is as follows: 2 deg for the nominal yaw regime, 9 deg for the midnight-turn regime, and 15 deg

for the noon-turn regime. Typical errors are expected to be less than half of these values.

IV. The Estimated Yaw Rates

As part of the implementation of the GYM models at JPL, the yaw rates of all eclipsing satellites

are estimated for every midnight turn and every noon turn. In JPL's GIPSY software, this is done

by treating the yaw rate as a piece-wise constant parameter for each satellite. Tile parameter value is

allowed to change twice per revolution, midway between noon and midnight. Since a small error in the

yaw rate can cause a large yaw error over time and, since our a priori knowledge of the yaw rate is not

sufficiently accurate, we found it necessary to iterate on the yaw rate value. JPL routinely publishes the

final estimates for the yaw rates as daily text files. Unfortunately, due to a software bug, the archived yaw

rates for dates prior to February 16, 1995, were in error. This leaves a period of about 2 months when the

estimated yaw rates are available. Figure 1 depicts the estimated yaw rates for each eclipsing satellite,

for each midnight turn, and for each noon turn, from February 16 to April 26, 1995. The accuracy

of the estimates depends on the amount of data available during each maneuver and this, ill turn, is

proportional to the duration of the maneuver. The longer the maneuver, the better the estimate. The

effect of a reduced estimation accuracy during short maneuvers is mitigated by the fact that the resulting

yaw error is also proportional to the duration of the maneuver. For long maneuvers, e.g., a midnight turn

at the middle of the eclipse season, the estimates are good to 0.002 deg/s, which leads to a maximal yaw

error of about 6 (leg. A similar error level is expected for short maneuvers. Noon turns occur only during

the middle part of the eclipse season. In Fig. 1, they can be distinguished from midnight-turn rates by the

larger formal error associated with them, since they are typically short events of 15- to a0-min duration.

As a result, tile scatter of the noon-turn rates is larger than that of tile midnight-turn rates. _Ibward

the edges of the eclipse season, the quality of the yaw rate estimates drops, again because of the short
duration of the shadow events. The most striking feature in Fig. 1 is the discontinuity of the estimated

yaw rates in the nfiddle of the eclipse season, corresponding to the beta angle crossing zero. No plausible

explanation is currently available for this jump. SVN 29 is the only satellite that does not have a jump

discontinuity; this is also the only satellite that does not undergo a bias switch in the middle of the eclipse

season. SVN 31 is the only satellite with a jump from high yaw rates to low yaw rates as the beta angle

transitions from positive to negative. There is nothing otherwise special about SVN 31. The ratio of the

high yaw-rate values to tile low yaw-rate values is about 1.3 for all satellites.

Within each half of the eclipse season, the midnight yaw rates are fairly constant, varying by 10 percent

or less. The noon-turn yaw rates seem to be more variable. This is not only a consequence of the weak

obserwfl_ility but also of the fact that the spacecraft is subject to a varying level of external torque during

the noon turn as the eclipse season progresses.

The modeling of the postshadow maneuver is a problem for which a satisfactory solution has not

yet been found. The source of the problem is that the presence of the postshadow regime makes the
estimation of the yaw rate into a nonlinear problem. There is always a critical value of the yaw rate

such that, for higher values, the spacecraft will reverse its yaw upon shadow exit and, for lower wtlues,

the spacecraft will retain its yaw rate until the end of the nfidnight turn. If this critical value falls in
the range of fl;asible yaw rates which it often does -it becomes very hard to figure out what kind of

maneuw_r the satellite is doing upon shadow exit. To avoid this postshadow ambiguity, we haw_ been

rejecting measurement data fl'om shadow exit until about 30 rain thereafter.
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Fig. 1. Estimated yaw rates with their formal errors versus GPS week for coplanar (C-plane) (a) SVN 28,
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A Light-Induced Microwave Oscillator
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We describe a novel oscillator that converts continuous light energy into sta-
ble and spectrally pure microwave signals. This light-induced microwave oscillator

(LIMO) consists of a pump laser and a feedback circuit, including an intensity

modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter.

We develop a quasilinear theory and obtain expressions for the threshold condition,

the amplitude, the frequency, the line width, and the spectral power density of
the oscillation. _Ve also present experimental data to compare with the theoret-

ical results. Our findings indicate that the LIMO can generate ultrastable, spec-
trally pure microwave reference signals up to 75 OHz with a phase noise lower than

-140 dBc/Hz at 10 kHz.

I. Introduction

Oscillators are devices that convert energy from a continuous source to a periodically varying signal.

They represent the physical realization of a fundamental basis of all physics, the harmonic oscillator, and

they are perhaps the most widely used devices in modern day society. Today a variety of oscillators--

mechanical [1] (such as the pendulum), electromagnetic (such as LC circuit [2,3] and cavity-based [4]), and
atomic (such as masers [5] and lasers [6])--provides a diverse range in the approximation to the realization

of the ideal harmonic oscillator. The degree of the spectral purity and stability of the output signal of the

oscillator is the measure of the accuracy of this approximation and is fundamentally dependent on the

energy storage ability of the oscillator, determined by the resistive loss (generally frequency dependent)
of the various elements in the oscillator.

An important type of oscillator widely used today is the electronic oscillator. The first such oscillator

was invented by L. De Forest [2] in 1912, shortly after the development of the vacuum tube. In this

triode-based device known as the van der Pol oscillator [3], the flux of electrons emitted by the cathode

and flowing to the anode is modulated by the potential on the intervening grid. This potential is derived

from the feedback of the current in the anode circuit containing an energy storage element (i.e., the

frequency-selecting LC filter) to the grid, as shown in Fig. l(a). Today the solid-state counterparts

of these valve oscillators based on transistors are pervasive in virtually every application of electronic
devices, instruments, and systems. Despite their widespread use, electronic oscillators, whether of the

vacuum-tube or the solid-state variety, are relatively noisy and lack adequate stability for applications

where very high stability and spectral purity are required. The limitation to the performance of electronic

oscillators is due to ohmic and dispersive losses in various elements in the oscillator, including the LC
resonant circuit.
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Fig. 1. Comparison of two types of oscillators: (a) van der Pol oscillator and (b) light-induced microwave oscillator.

For approximately the past 50 years, the practice of reducing the noise in the electronic oscillator by

combining it with a high-quality factor (Q) resonator has been followed to achieve improved stability and

spectral purity. The Q is a figure of merit for the resonator given by Q = 2rrfrd, where rd is the energy

decay time that measures the energy storage ability of the resonator and f is the resonant frequency.

High-Q resonators used for stabilization of the electronic oscillator include mechanical resonators, such

as quartz crystals [7,8]; electromagnetic resonators, such as dielectric cavities [9]; and acoustic [101 and

electrical delay lines, where the delay time is equivalent to the energy decay time, ra, and determines

the achievable Q. This combination with a resonator results in hybrid-type oscillators referred to as

electromechanical, electromagnetic, or electro-acoustic, depending on the particular resonator used with

the oscillator circuit. The choice of the particular resonator is generally determined by a variety of factors,

but for the highest achievable Q's at room temperatures, the crystal quartz is the resonator of choice for

the stabilization of the electronic oscillator. However, because quartz resonators have only a few high-Q

resonant modes at low frequencies [7,8], they have a limited range of frequency tunability and cannot be

used to directly generate high-frequency signals.

In this article, we introduce a novel photonic oscillator [11,12] characterized by spectral purity and

frequency stability rivaling the best crystal oscillators. This oscillator, shown schematically in Fig. l(b),

is based on converting the continuous light energy from a pump laser to radio frequency (RF) and

microwaw, signals, and thus we refer to it with the acronym LIMO, for the light-induced microwave

oscillator. The LIMO is fundalnentally similar to the van der Pol oscillator, with photons replacing

the flmction of electrons, an electro-optic (E/O) modulator replacing the flmction of the grid, and a

photodetector replacing the function of the anode. The energy storage flmction of the LC circuit in the

van der Pol oscillator is replaced with a long fiber-optic delay line in the LIMO.

Despite this close similarity, the LIMO is characterized by significantly lower noise and very high

stability, as well as by other flmctional characteristics that are not achieved with the electronic oscillator.

The superior performance of the LIMO results from the use of electro-optic and photonic components that

are generally characterized by high efficiency, high speed, and low dispersion in the microwave frequency

regime. Specifically, currently there are photodetectors available with quantum efficiency as high as

90 percent that can respond to signals with frequencies as high as 110 GHz [13]. Similarly, E/O modulators

with a 75-GHz frequency response are also available [14]. Finally, the commercially available optical fiber,

which has a small loss of 0.2 dB/km for 1550 nm light, allows long storage time of the optical energy

with negligible dispersive loss (loss dependent on frequency) for the intensity modulations at microwave

fl'equencies.
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The LIMO may also be considered as a hybrid oscillator in so far as its operation involves both light

energy and microwave signals. Nevertheless, as a hybrid oscillator, the LIMO is unique in that its output

may be obtained both directly as a microwave signal or as intensity modulation of a optical carrier. This

property of the LIMO is quite important for applications involving optical elements, devices, or systems

[11].

The ring configuration, consisting of an electro-optic modulator that is fed back with a signal from the

detected light at its output, has been previously studied by a number of investigators interested in the

nonlinear dynamics of bistable optical devices [15-19]. The use of this configuration as a possible oscillator

was first suggested by A. Neyer and g. Voges [20]. Their investigations, however, were primarily focused on

the nonlinear regime and the chaotic dynamics of the oscillator. This same interest persisted in the work of

T. Aida and P. Davis [21], who used a fiber wave guide as a delay line in the loop. Our studies, by contrast,
are specifically focused on the stable oscillation dynamics and the noise properties of the oscillator. The

sustainable quasilinear dynanfics, both in our theoretical and experimental demonstrations, are arrived

at by the inclusion of a filter in the feedback loop to eliminate harmonics generated by the nonlinear

response of the E/O modulator. This approach yields stable, low-noise oscillations that closely support
the analytical formulation presented here.

In this article, we first describe the oscillator and identify the physical basis for its operation. We then

develop a quasilinear theory for the oscillator dynamics and the oscillator noise. Results of the theory

are then compared with experimental results.

II. Description of the. Oscillator

The LIMO utilizes the transmission characteristics of a modulator together with a fiber-optic delay

line to convert light energy into stable, spectrally pure RF/nficrowave reference signals. A detailed view

of the construction of the oscillator is shown schematically in Fig. 2. In this depiction, light from a laser

is introduced into an E/O modulator, the output of which is passed through a long optical fiber, and

detected with a photodetector. The output of the photodetector is amplified and filtered and fed back to

the electric port of the modulator. This configuration supports self-sustained oscillations at a frequency

determined by the fiber delay length, bias setting of the modulator, and the bandpass characteristics of

the filter. It also provides for both electrical and optical outputs, a feature which would be of considerable

advantage to photonics applications.

We use a regenerative feedback model to analyze the spectral properties of the LIMO. Similar methods

have been successfully used to analyze lasers [5] and surface acoustic wave oscillators [22]. The conditions
for self sustained oscillations include coherent addition of partial waves each way around the loop and a

loop gain exceeding losses for the circulating waves in the loop. The first condition implies that all signals

that differ in phase by some multiple of 27r from the fundamental signal may be sustained. Thus, the

oscillation frequency is limited only by the characteristic frequency response of the modulator and the

setting of the filter, which eliminates all other sustainable oscillations. The second condition implies that
..... ,- -_, ......... ,:-_._ : ................ 1_ sustained oscillations may he ohtained, without the need for the
}_lbll ¢_lltZtllttctb_ ll_::_llla l_uvv_L,

RF/microwave amplifier in the loop. These characteristics, which are expected based on the qualitative

analysis of the oscillator dynamics, are mathematically derived in the following sections.

III. Quasilinear Theory of the LIMO

In the following sections, we introduce a quasilinear theory to study the dynamics and noise of a
LIMO. In the discussion, we assume that the E/O modulator in the oscillator is of the Mach-Zehnder

type. However, the analysis of oscillators made with different E/O modulators may follow the same

procedure. The flow of the theory is as follows: First, the open-loop characteristics of a photonic link

consisting of a laser, a modulator, a fiber delay, and a photodetector are determined. We then close the

49



PUMP LASER

BIAS

OPTICAL OUT

ELECTRICAL OUTPUT

ELECTRICAL INJECTION

NOISE

OPTICAL INJECTION

RF DRIVING PORT

FILTER

RF COUPLER

RF AMPLIFIER

PHOTODETECTOR

OPTICAL COUPLER

OPTICAL FIBER

FIBER
STRETCHER

OPTICAL

ELECTRICAL

Fig. 2. Detailed construction of a LIMO. Optical injection and RF injection ports are
supplied for synchronizing the oscillator with an external reference by either optical
injection locking or electrical injection locking [12]. The bias port and the fiber stretcher
can be used to fine tune the oscillation frequency [12]. Noise in the oscillator can be
viewed as being injected from the input of the amplifier.

loop back into the modulator and invoke a quasilinear analysis by including a filter in the loop. This

approach leads us to a formulation for the amplitude and the frequency of the oscillation. In the next

step, we consider the influence of the noise in the oscillator, again assisted by the presence of the filter,

which limits the number of circulating Fourier components. We finally arrive at an expression for the

spectral density of the LIMO that would be suitable for experimental investigations.

A. Oscillation Threshold

The optical power from the E/O modulator's output port that forms the loop is related to an applied
voltage V_n(t) by

[v.,(t)
P(t)= (@){1-qsinTr L V_ +-_]} (1)

where ci is tile fractional insertion loss of the modulator, V_ is its half-wave voltage, lib is its bias voltage,

t:>ois the input optical power, and q determines the extinction ratio of the modulator by (1 + _7)/(1 - _7)-

If the optical signal P(t) is converted to an electric signal by a photodetector, the output electric signal
after an RF amplifier is

Volt(t) = pP(t)RGA = Vph 1 - qsin;r L v. + (2)

where p is the responsivity of the detector, R is the load impedance of the photodetector, GA is the

amplifier's voltage gain, and Vvh is the photovoltage, defined as

Vph = (_) RGA = IphRG A (3)

with Ivh - ciPop/2 as the photocurrent. The LIMO is forined by feeding the signal of Eq. (2) back to the

RF input port of the E/O modulator. Therefore, the sinall signal open-loop gain, Gs, of the LIMO is
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dVo,,t _ 7prVpscos (4)

The highest small signal gain is obtained when the modulator is biased at quadrature, that is, when

VB = 0 or V=. From Eq. (4), one may see that Gs can be either positive or negative, depending on

the bias voltage. The modulator is said to be positively biased if Gs > 0; otherwise it is negatively

biased. Therefore, when VB = 0, the modulator is biased at negative quadrature, while when VB = V_,

the modulator is biased at positive quadrature. Note that in most externally modulated photonic links

the E/O modulators can be biased at either positive or negative quadrature without affecting their

performance. However, as will be seen next, the biasing polarity will have an important effect on the
operation of the LIMO.

In order for the LIMO to oscillate, the magnitude of the small signal open-loop gain must be larger
than unity. From Eq. (4), we immediately obtain the oscillation threshold of the LIMO to be

v_
v_h = _,vlcos(_VB/V_)l (5)

For the ideal case in which 71= 1 and VB = 0 or V_, Eq. (5) becomes

v_
vph = -- (6)

7i"

It is important to notice from Eqs. (3) and (6) that the amplifier in the loop is not a necessary condition

for oscillation. So long as IphR > Vn/Tr is satisfied, no amplifier is needed (GA = 1). It is the optical
power from the pump laser that actually supplies the necessary energy for the photonic oscillator. This

property is of practical significance because it enables the LIMO to be powered remotely using an optical

fiber. Perhaps more significantly, however, the elimination of the amplifier in the loop also eliminates

the amplifier noise, resulting in a more stable oscillator. For a modulator with a V_ of 3.14 V and

an impedance, R, of 50 f_, a photocurrent of 20 mA is required for sustaining the photonic oscillation

without an amplifier. This corresponds to an optical power of 25 mW, assuming the responsivity, p, of

the photodetector to be 0.8 A/W.

B. Linearization Of the E/O Modulator's Response Function

In general, Eq. (2) is nonlinear. If the electrical input signal V_(t) to the modulator is a sinusoidal

wave with an angular frequency of w, an amplitude of Vo, and an initial phase of/3,

Vin(t) = Vosin(wt +/3) (7)

then the output at the photodetector, Volt(t), can be obtained by substituting Eq. (7) in Eq. (2) and

expanding the left-hand side of Eq. (2) with Bessel functions:

Vout(t) = Vph 1--_sin\ V_ ] Jo\ V_ ] + 2 E J2m cos(2mwt + 2m/3)

- 2r/cos \ V_ ] E J2m+l sin [(2m + 1)wt + (2m + 1)/3]
m=O

(8)
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It is clear from Eq. (8) that the output contains many harmonic components of w.

The output can be linearized if it passes through an RF filter with a bandwidth sufficiently narrow to

block all harmonic components. The linearized output can be obtained easily fl'om Eq. (8):

volt(t) = a(vo)E (t) (9)

where the voltage gain coefficient, G(Vo), is defined as

( Vo) (10a)

It can be seen that the voltage gain, G(Vo), is a nonlinear flmction of the input amplitude, Vo, and its

magnitude decreases monotonically with Vo. However, for a small enough input signal (Vo << V_ and

JI(rrVo/V,_) = rrVo/2V,_), we call recover from Eq. (10a) the small signal gain: G(Vo) = Gs.

If we expand the left-hand side of Eq. (2) with Taylor series, the gain coefficient can be obtained as

1G(Vo) = Gs 1- -_ \ 2V_ ] + _ \ 2V_ ]
(lOb)

It should 1)e kept in nfind that, in general, G(Vo) is also a function of the frequency, w, of the input

signal, because Vph is linearly proportional to the gain of the RF amplifier and the responsivity of the

photodetector, which are all frequency depen(h:nt. In addition, the V_ of the modulator is also a function

of the input RF fi'equency. Furthermore, the frequency response of the RF filter in the loop can also be
luml)ed into G(Vo). In the discussions below, we will introdnce a unitless complex filter fimction, fi'(w),

to explicitly account fi)r the combined effect of all frequency-dependent components in the loop while

treating G(Vo) to be frequency independent:

F(w) = F(w)c _O(_) (ii)

where O(w) is the frequency-dependent phase caused by the dispersive conlponent in tim loop and F(w)

is the real normalized transmission function. Now Eq. (9) can be rewritten in complex form as

: t) (12)

where _)_,_ and l),,,,t are coInplex input and output voltages. Note that although Eq. (12) is linear, the

nonlinear e.tti_('t of the modulator is not lost it is contained in the nonlinear gain coefficient, G(Vo).

C. Oscillation Frequency and Amplitude

Ill this section, we derive the exl)r('ssions fin' the amlflitude and frequency of tile LIMO. Like other

oscillat()rs, the oscillation of a LIMO starts fl'om noise transient, which is then built /1I) and sustained
with feedback at the level of the oscillatc)r output signal. We derive the amplitude of the oscillating

signal l)y considering this pr()cess mathematically. The noise transient can be viewed as a collection of

sine waves with randonl phases and amplitud('s. _Ib siml)lify our derivation, we use this noise input with

the linearized expression of Eq. (12) for the loop response. Because Eq. (12) is linear, the superposition
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principle holds, and we can analyze the response of the LIMO by first inspecting the influence of a

single-frequency component of the noise spectrum:

(13)

where l)/,_(co) is a complex amplitude of the frequency component.

Once the noise component of Eq. (13) is in the oscillator, it would circulate in the loop, and the

recurrence relation of the fields from Eq. (12) is

_&(co,t) = P(_o)C(Vo)g__l(co, t - _-') (14)

where r' is the time delay resulting from the physical length of the feedback and n is the number of times
the field has circulated around the loop, with V,,=0(co, t) = _(co, t). In Eq. (14), the argument Vo in

G(Vo) is the amplitude of the total field (the sum of all circulating fields) in the loop.

The total field at any instant of time is the summation of all circulating fields. Therefore, with the

input of Eq. (13) injected in the oscillator, the signal measured at the RF input to the modulator for the
case when the open-loop gain is less than unity can be expressed as

9(<t) = ao_.(co) F(co)a(Vo) c_(_-'''1 =
n=0 1 - F'(CO)G(Vo)e -i_°''

(15)

For a loop gain below threshold and with a small Vo, G(Vo) is essentially the small signal gain, Gs, given

by Eq. (4).

The corresponding RF power of the circulating noise at frequency co is, therefore,

p(co) - tI_(co' t)12 - G_l_'(co)12/(2R) (16)
2R 1 + [F(co)G(Vo)l 2 - 2F(co)lG(Vo)l COS[COT'4- qS(CO)4- _b0]'

where ¢o = 0 if G(Vo) > 0 and ¢o = r if G(Vo) < O.

For a constant iT],_(co), the fiequency response of a L!MO has equally spaced peaks similar to those of

a Fabry-Perot resonator, as shown in Fig. 3. These peaks are located at the frequencies determined by

cokr' + _(cok) + gSo= 2kTr k = O, 1,2,..- (17)

where k is the mode number. In Fig. 3, each peak corresponds to a frequency component resulting from

the coherent summation of all circulating fields in the loop at that frequency. As the open-loop gain

increases, the magnitude of each peak becomes larger and its shape becomes sharper. These peaks are

the possible oscillation modes of the LIMO. When the open-loop gain is larger than unity, each time a

noise component at a peak frequency travels around the loop, it is amplified and its amplitude increases

geometrically an oscillation is started from noise.

Because an RF filter is placed in the loop, the gain of only one mode is allowed to be larger than unity,

thus selecting the mode that is allowed to oscillate. Because of the nonlinearity of the E/O modulator

or the RF amplifier, the amplitude of the oscillation mode cannot increase indefinitely. As the amplitude
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Fig. 3. Illustration of the oscillator's output spectra below and above the threshold.

increases, higher harmonics of the oscillation will be generated by the nonlinear effect of the modulator or

the amplifier, at the expense of the oscillation power, and these higher harmonics will be filtered out by

the RF filter. Effectively, the gain of the oscillation mode is decreased according to Eq. (10) until the gain
is, for all practical measures, equal to unity, and the oscillation is stable. As will be shown later, because

of the continuous presence of noise, the closed-loop gain of an oscillating mode is actually less than unity

by a tiny amount on the order of 10 -1°, which ensures that the summation in Eq. (15) converges.

In the discussion that follows, only one mode k is allowed to oscillate, and so we will denote the

oscillation frequency of this mode as fo_c or _Zo_(Wo,_ = 27rfo_), its oscillation amplitude as Vo_, and its
oscillation power as Po_(Po_ = Vo2_/2R). In this case, the amplitude, Vo, of the total field in Eq. (16)

is just the oscillation amplitude, Vo_, of the oscillating mode. If we choose the transmission peak of the

filter to be at the oscillation frequency, Wo,¢, and so F(aJo_¢) = 1, the oscillation amplitude can be solved

by setting the gain coefficient, ]G(Vo_¢)[, in Eq. (16) at unity. From Eq. (10a), this leads to

j, (7cVo,c _ _ 1 7cVosc (18a)k v,_ / 21c_1 v_

In deriving Eq. (18a), we have assumed that the RF amplifier in the loop is linear enough that the

oscillation power is limited by the nonlinearity of the E/O modulator. The amplitude of the oscillation

can be obtained by solving Eq. (18a) graphically, and the result is shown in Fig. 4(a). Note that this

result is the same as that obtained by Neyer and Voges [20] using a more complicated approach.

If we use Eq. (10b), we can obtain the approximated solutions of the oscillation amplitude:

Vo,_ 2v_V,_ _ /1 1
- rc V IGsl third_rder expansion (18b)

(Vo,_c 2v_V,__ 1 _ 1 4 -1
7r

fifth-order expansion (18c)

The threshold condition of IG'sI _> 1 is clearly indicated in Eqs. (18b) and (18c). Figure 4(a) shows

the normalized oscillation amplitude as a function of IGsl, obtained from Eqs. (laa), (18b) and (18c),

respectively. Comparing the three theoretical curves, one can see that, for ]Gsl < 1.5, the third-order

expansion result is a good approximation. For [Gsl < 3, the fifth-order expansion result is a good
approximation.
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The corresponding oscillation frequency, fosc - fk = wk/27r, can be obtained from Eq. (17) as

(k + 1/2)
fosc- fk - for C(Vo,_) < 0 (19a)

T

k
fo,¢ - fk = - for G(Vo,_) > 0 (10b)

T

where _- is the total group delay of the loop, including the physical length delay, _-', of the loop and the

group delay resulting from dispersive components (such as an amplifier) in the loop, and it is given by

d¢(_)
r = r' + daJ I_........

(20)

For all practical purposes, Jl(TrVo,_/V_) >_ 0 or Vo,_/V_ <_ 1.21, and the sign of G(Vosc) is determined by

the small signal gain, G,. It is interesting to notice from Eqs. (19a) and (19b) that the oscillation frequency

depends on the biasing polarity of the modulator. For negative biasing (Gs < 0), the fundamental

frequency is 1/(2r), while for positive biasing (Gs > 0), the fundamental frequency is doubled to 1/T.
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D. The Spectrum

The fundamental noise in a LIMO consists of the thermal noise, the shot noise, and the laser's intensity

noise, which for the purpose of analysis can be viewed as all originating from the photodetector. Since
the photodetector is directly connected to the amplifier, the noise can be viewed as entering the oscillator

at the input of the amplifier, as shown in Fig. 2.

We compute the spectrum of the oscillator signal by determining the power spectral density of noise

ill the oscillator. Let pN(aJ) be the power density of the input noise at frequency w; we have

IV'"(_)12 (21)
pN(w)Af -- 2R

where Af is the frequency bandwidth. Substituting Eq. (21) in Eq. (16) and letting F(a;osc) = 1, we

obtain the power spectral density of the oscillating mode k:

P(f') pNG2 /p°sc (22)
SnF(f') = -Af Posc - 1 + IV(f')G(Vo_c)l 2 - 2F(f')IG(Vo_)I cos(27r/'T)

where f' - (a3 - a_o,_)/27r is the fi'equency offset from the oscillation peak, fo_c. In deriving Eq. (22),

both Eqs. (17) and (20) are used.

By using the normalization condition

I5 iSnF(f')df' _ SnF(f')df'= 1 (23)
oo J-1/2r

we obtain

pNG_.
1 - IG(Vo._)I2 _, 2 [1 - IG(Vosc)l]- _-Po_c (24)

Note that in Eq. (23) we have assumed that the spectral width of the oscillating mode is much smaller

than the mode spacing, l/r, of the oscillator, so that the integration over 1/r is sufficiently accurate. In

addition, in the derivation, we have assumed that IF(f')[ _ 1 in the frequency band of integration.

Typically, [}N _ 10 -_7 mW/Hz, Posc _ 10 lnW, G 2 _ 100, and r _ 10 -6 s. Froin Eq. (24), one can

see that the closed-loop gain, IG(Vo._)], of the oscillating mode is less than unity by an amount of 10 -l°.

Therefl}re, the equation IG(ro_c)l = 1 is sufficiently accurate for calculating the oscillation amplitude,

Vo .... as in Eqs. (18a), (18b), and (18c).

Finally, substituting Eq. (24) in Eq. (22), we obtain the RF spectral density of the LIMO:

where 6 is defincd as

s_.,(f') = _ (25)
(2 - 6lr) - 2Vff - 61r cos(2nf'r)
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=- pNG2A (26)
Posc

As mentioned before, PN is the equivalent input noise density injected into the oscillator from the input

port of the amplifier, and Po_e/G2A is the total oscillating power measured before the amplifier. Therefore,

5 is the input noise-to-signal ratio to the oscillator.

For the case where 27rff7 << 1, we can simplify Eq. (25) by expanding the cosine function in Taylor
series:

5

SRF(f') = (6/2__)2 + (2W)2(Tf,) 2 (27)

Equation (27) is a good approximation even for 27rfI_ = 0.7, at which value the error resulting from

neglecting the higher-order terms in Taylor expansion is less than 1 percent. It can be seen fl'om Eq. (27)

that the spectral density of the oscillating mode is a Lorentzian function of frequency. Its full width at

half maximum (FWHM), AfFWHM, is

A f FW H M = __1 ___= __1 .__G2APN (28a)
27r 72 27r w2Po_c

It is evident from Eq. (28a) that AfFWHM is inversely proportional to the square of the loop delay time
and linearly proportional to the input noise-to-signal ratio, 5. For a typical 5 of 10-16/Hz and a loop

delay of 100 ns (20 m), the resulting spectral width is submilli-Hertz. The fractional power contained in

AfFWHM is AfFwHMSRF(O) = 64 percent.

From Eq. (28a), one can see that for fixed PN and GA, the spectral width of a LIMO is inversely pro-

portional to the oscillation power, similar to the famous Schawlow-Townes formula [23,35] for describing

the spectral width, AUla_er, of a laser:

1 Ps (28b)
Al/laser = --27r Tlaser2 P_laser

whcre Ps = h'_, is the spontaneous emission noise density of the laser, Plaser is the laser oscillation power,

and rlase_ is the decay time of the laser cavity. However, because, as will be shown in Section III.E,

both Po_e and PN are functions of the photocurrent, the statement that the spectral width of a LIMO is

inversely proportional to the oscillation power is valid only when thermal noise dominates in the oscillator

at low photocurrent levels.

From Eq. (28a), the quality factor, Q, of the oscillator is

T

fosc -- QD_ (29)Q- AfFWHM

where QD is the quality factor of the loop delay line and is defined as

QD = 27rfoscW (30)

From Eq. (27), we easily obtain
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SRF(f') 4r2- 5 If'l << AfFWHM (31a)2

SRF(f') -- 6 If'[ >> /kfFWHM (31b)
(27r)2(Tf') 2 2

It carl be shown [24] that for an oscillator with a phase fluctuation much less than unity, its power spectral

density is equal to the sum of the single side-band phase noise density and the single side-band amplitude

noise density. In most cases in which the amplitude fluctuation is much less than the phase fluctuation,

the power spectral density is just the single side-band phase noise. Therefore, it is evident from Eq. (31b)

that the phase noise of the LIMO decreases quadratically with the frequency offset, f_. For a fixed f',

the phase noise decreases quadratically with the loop delay time. The larger the % the smaller the phase

noise. However, the phase noise cannot decrease to zero no matter how large T is, because at large enough
rain 6/4 at% Eqs. (27) and (31b) are not valid anymore. From Eq. (27), the mininmm phase noise is SRE

f' = 1/2W. For the frequency offset, f', outside of the passband of the loop filter (where F(f') = 0), the

phase noise is simply the noise-to-signal ratio, 6, as can be seen from Eq. (22).

Equations (25), (27), and (31b) also indicate that the oscillator's phase noise is independent of the

oscillation frequency, lose. This result is significant because it allows the generation of high-frequency and

low ph_e-noise signals with the LIMO. The phase noise of a signal generated using frequency-multiplying

methods generally increases quadratically with the frequency.

E. The Noise-to-Signal Ratio

As mentioned before, the total noise density input to the oscillator is the sum of the thermal noise,

Pth¢_mo.t = 4kBT(NF); the shot noise, Pshot _- 2eIphR; and the laser's relative intensity noise (RIN),
2

PR1N = NRINIphR, densities [25,26]:

2
PN = 4kuT(NF) + 2elphR + NRINIphR (32)

where ku is Boltzmann's constant, T is the ambient temperature, NF is the noise factor of the RF

alnplifier, e is the electron charge, /:ph is the photocurrent across the load resistor of the photodetector,

and NRtN is the RIN of the pump laser.

From Eqs. (26) and (32), one can see that if the thermal noise is dominant, then 6 is inversely

proportional to the oscillating power, Pos_, of the oscillator. In general, Po_ is a function of photocurrent,

Iph, and amplifier gain, GA, as determined by Eqs. (18a), (18b), and (18c), and the noise-to-signal ratio
from Eq. (26) is thus,

2

6 = ]Gsl2 4kT(NF) + 2elphR + NRINIphR

1 - 1/ICsl 4_ cos:(_V./V.)D_hR
(33)

In deriving Eq. (33), Eqs. (4) and (18b) are used. From Eq. (33), one can see that 6 is a nonlinear

function of the small signal gain of the oscillator. As shown in Fig. 5(a), it reaches the minimum value
at IGsl = 3/2:

6rain = 4kT(NF) + 2etphR -[- NRINI2ph R (34)

(16/27)1_R
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where _ = 1 and cos(TrVB/V,_) = 1 are assumed. The oscillation amplitude at IGsl = 3/2 can be obtained

from Eq. (18b) as

- 0.52V (asa)Vo,c

and the corresponding RF power is

loP5 (35b)= = ---2--

where p_dB is the input 1-dB compression power of the E/O modulator [26,271. Prom Eq. (35b), one can

conclude that, in order to have minimum noisc, the oscillation power mee.sured at the input of the E/O

modulator should be 5 dB above the 1-dB compression power of the modulator. Equation (35a) indicates

that the noise of the oscillator is at minimum when the oscillating amplitude is roughly half of V_ or the

voltage in the oscillator is varying between the peak and the trough of the sinusoidal transmission curve

of the E/O modulator. This makes sense because the modulator has its minimum sensitivity to voltage

59



variations at the maximum and the minimum of the transmission curve, and the most likely cause of

voltage variations in a LIMO is the noise in the loop.

It is evident from Eq. (34) that tile higher the photocurrent, the less the noise-to-signal ratio of tile
oscillator until it flattens out at the laser's RIN level. Therefore, the ultimate noise-to-signal ratio of

a LIMO is limited by the pump laser's RIN. If the RIN of tile pump laser in a LIMO is -160 dB/Hz,

the ultimate noise-to-signal ratio of the oscillator is also -160 dB/Hz, and the signal-to-noise ratio is

160 dB/Hz. Figure 5(b) shows the noise-to-signal ratio, 5, as a function of photocurrent, Ip/_, for different

RIN levels. In the plot, tile small signal gain, Gs, is chosen to be a constant of 1.5, which implies that

when Ipl,. is increased, the amplifier gain, GA, must be decreased to keel) Gs constant. From the figure,

one can easily see that _ decreases quadratically with Ivh at small Iph and flattens out at the RIN level

at large Iph.

F. Effects of Amplifier Nonlinearity

In the discussions above, we have assumed that the nonlinem distortion of a signal from the E/O

modulator is lnore severe than from the amplifier (if any) used in the oscillator, so that the oscillation

amplitude or power is linfited by the nonlinear response of the E/O modulator. Using an engineering

term, this simply means that the outImt 1-dB compression power of the amplifier is much larger than the

input 1-dB compression power of the E/O modulator [26].

For cases in which the output 1-dB compression power of the amplifier is less than the input 1-dB

compression power of the modulator, the nonlinearity of the amplifier will limit the oscillation amplitude,

V(,,_ (or power Po_), of the oscillator, resulting in an oscillation amplitude less than that given by

Eqs. (18a), (18b), and (18c). The exact relation between the oscillation amplitude (or power) and the

small signal gain, Gs, can be determined using the same linearization procedure as that used for obtaining

Eqs. (18a), (18b), and (18c) if the nonlinear response flmction of the amplifier is known. However, all

the equatious in Section III.D for describing the spectrum of the oscillator are still valid, provided that

the oscillation power in those equations is deterlnined by the nonlinearity of the amplifier. For a high

enough small signal gain, Gs, the oscillation power is approximately a few dB above the output 1-dB

compression power of the amplifier.

In all the experiments below, the output 1-dB compression power of the amplifiers chosen is much

larger than the input 1-dB compression power of the modulator, so that the oscillation power is limited

by the modulator.

IV. Experiments

A. Amplitude Versus Open-Loop Gain

We perfbrmed measurements to test the level of agreement of the theory described above with exper-

imental results. In all of our experiments, we used a highly stable diode-pumped Nd:YAG ring laser [35]

with a built-in RIN reduction circuit [36] to pump the LIMO. The experimental setup for measuring the
oscillation amplitude as a function of the open-loop gain is shown in Fig. 6(a). Here an RF switch was

used to open and (:lose the loop. While the loop was open, an RF signal from a signal generator with the

same frequelmy as the oscillator was injected into the E/O modulator. The amplitudes of the injected

signal and the output signal fl'om the loop were nmasured with an oscilloscope to obtain the open-loop

gaul, which was the ratio of the output amplitude to the injected signal amplitude. The open-loop gain

was varmd l)y (:hanging the bias voltage of the E/O modulator, by attenuating the optical power of the

loop, or by using a wuiable RF attemmtor after the 1)hotodetector, as indicated by Eq. (4). When closing

the 1()Ol), the alnl)litude of the oscillation was conveniently measured using the same oscilloscol)e. We

measm'ed the oscillation aml)litu(les of the LIMO for different open-loop gains at an oscillation frequency

of 100 MHz, and the data ol)taine([ are plotted in Fig. 4(b). It is evident that the experimental data
agreed well with our theoretical predi(:tions.
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Fig. 6. Experimental setups for measuring (a) the oscillation amplitude of a LIMO as a function of the
small signal gain and (b) the phase noise of a LIMO using the frequency discrimination method.

B. Phase Noise Measurement Setup

\Ve used a frequency discriminator method [28] to measure the phase noise of the LIIVlO, and the

experimental setup is shown in Fig. 6(b). The advantage of this method is that it does not require a
frequency reference and, hence, can be used to measure an oscillator of any frequency. Using a microwave

mixer in the experiment, we compared the phase of a signal from the electrical output port of the LIMO
with its delayed replica from the optical output port. The length of the delay line is important because,

the longer the delay line, the lower the frequency offset at which the phase noise can be accurately

measured. On the other hand, if the delay line is too long, the accuracy of the phase noise at a higher

frequency offset will suffer. The length of delay used in our experiment is 1 km, or 5 #s. Because of this

delay, any frequency fluctuation of the LIMO will cause a voltage fluctuation at the output of the mixer.

We measured the spectrum of this voltage fluctuation with a high dynamic-range spectrum analyzer and
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transferred the spectral data to a computer. Finally, we converted this information into the phase noise

spectrum of the LIMO according to the procedures given in [28]. In these expcriments, the noise figure
of the RF amplifier was 7 dB.

C. Phase Noise as a Function of Offset Frequency and Loop Delay

Figure 7(a) is the log versus log scale plot of the measured phase noise as a function of the frequency

offset, f'. Each curve corresponds to a different loop delay time. The corresponding loop delays for curves

1-5 are listed adjacent to each curve, and the corresponding oscillation powers are 16.33, 16, 15.67, 15.67,

and 13.33 dBm, respectively. Curve fitting yields the following phase noise relations as a function of

frequency offset f': -28.7 - 20 log(f'), -34.84 - 20 log(f'), -38.14 - 20 log(f'), -40.61 - 20 log(f'), and
-50.45 - 201og(f_). Clearly, the phase noise has a 20-dB-per-decade dependence with the frequency

offset, in excellent agreement with the theoretical prediction of Eq. (31b).

Figure 7(b) is the measured phase noise at 30 kHz from the center frequency as a function of loop delay

time, with data points extracted from curves 1-5 of Fig. 7(a) and corrected to account for oscillation power

differences. Because the loop delay is increased by adding more fiber segments, the open-loop gains of the

oscillator with longer loops decrease as more segments are connected, causing the corresponding oscilla-

tion power to decrease. From the results of Fig. 8, discussed below, the phase noise of the LIMO decreases
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linearly with the oscillation power. To extrapolate the dependence of the phase noise on the loop delay

only from Fig. 7(a), each data point in Fig. 7(b) is calibrated using the linear dependence of Fig. 8, while

keeping the oscillation power for all data points at 16.33 mW. Again, the experimental data agree well
with the theoretical prediction.

D. Phase Noise as a Function of Oscillation Power

We have also measured the phase noise spectrum of the LIMO as a function of oscillation power, with

the results shown in Fig. 8. In that experiment, the loop delay of the LIMO was 0.06 ps, the noise figure

of the RF amplifier was 7 dB, and the oscillation power was varied by changing the photocurrent, Iph,

according to Eqs. (3), (4), (18a), (18b), and (18c). With this amplifier and the photocurrent level (1.8 mA

- 2.7 mA), the thermal noise in the oscillator dominates. Recall that, in Eqs. (25), (26), and (27), the
phase noise of a LIMO is shown to be inversely proportional to the oscillation power. This is true if the

gain of the amplifier is kept constant and the photocurrent is low enough to ensure that the thermal noise

is the dominant noise term. In Fig. 8(a), each curve is the measurement data of the phase noise spectrum

corresponding to an oscillating power, and the curves in Fig. 8(b) are the fits of the data to Eq. (31b).

Figure 8(c) is the phase noise of the LIMO at 10 kHz as a function of the oscillation power, extracted
from the data of Fig. 8(b). The resulting linear dependence agrees well with the theoretical prediction of

Eq. (31b).

E. Phase Noise Independence of Oscillation Frequency

To confirm our prediction that the phase noise of the LIMO is independent of the oscillation frequency,

we measured the phase noise spectrum as a function of tile oscillation frequency, and the result is shown

in Fig. 9(a). In tile experiinent, we kept the loop length at 0.28 ps and varied the oscillation frequency
by changing the RF filter in the loop. The frequency was fine tuned using an RF line stretcher. It is

evident from Fig. 9(a) that all phase noise curves at frequencies 100, 300, 700, and 800 MHz overlap with

one another, indicating a good agreement with tile theory. Figure 9(b) is a plot of the phase noise data
at 10 kHz as a flmction of tile frequency. As predicted, it is a fiat lilm, in contrast with tile case when

a frequency multiplier is used to obtain higher frequencies. This result is significant because it confirms

that the LIMO can be used to generate high-frequency signals up to 75 GHz with a nmch lower phase

noise than that which can be attained with frequency-multiplying techniques.

V. Summary

We have introduced a high-frequency, high-stability, high spectral purity, widely tunable electro-optic

oscillator, which we have termed a LIMO. The high stability and spectral purity of the LIMO result from

the extremely low energy storage loss realization obtained with a long optical fiber. The optical fiber

is also virtually free of any frequency-dependent loss, resulting in the same long storage time and high

spectral purity signals for both low- and high-frequency oscillation. On the other hand, the oscillation

frequency of the LIMO is limited only by the speed of the modulator, which at the present can be as

high as 75 GHz. As yet another unique feature, the output of the LIMO may be obtained directly as

microwave signals or as intensity modulations on an optical carrier for easy interface with optical systems.

We also analyzed the performance of this oscillator by deriving expressions for the oscillation threshold,

Eq. (5); oscillation amplitude, Eqs. (18a), (18b), and (18c); and oscillation frequency, Eqs. (19a) and (19b).
These results agree quite well with experimental data obtained with laboratory versions of the LIMO.

We also dm'iw_d the. expression tbr the spectrmn of the output of the LIMO and showed that it has a

Lorenzian line shape, given by Eqs. (25) and (27). The spectral width of the output signal was found to

be inw_i'sely prolmrtional to tile square of tim loop delay time, given by Eqs. (283) and (28b). In addition,

at low optical lmmping levels where thernml noise dominates, the spectral line width was found to be
inw'.rsely proportional to the oscillation power of the oscillator, similar to the Schawlow-Townes formula
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describing the spectral width of a laser. Since increasing the optical pump power increases the oscillation

power, in this regime the line width of the LIMO decreases as the optical pump power increases. On the

other hand, at high pump powers where the pump laser's relative intensiLy noise dominates, the spectral

width approaches a minimmn value determined by the laser's RIN noise, as given by Eqs. (25), (27), and

(34). We measured the phase noise spectrum of the LIMO and verified our theoretical findings.

It is important to note that the analysis performed here was for the specific case of the LIMO with

a Mach Zehnder electro-optic modulator. Other modulation schemes, such as with electro-absorptive

modulators or by direct modulation of semiconductor lasers [29], will also lead to signals with charac-

teristics similar to those obtained in this work. For these examples, the theoretical approach developed

above is still applicable after suitable modifications. The major change required in the analysis is the

replacement of Eq. (1), which describes the transmission characteristics of a Mach-Zehnder modulator,

with the appropriate equation for the specific modulation scheme. All other equations can then be derived

in the same way as described in the theory.
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Because of its unique properties, the LIMO may be used in a number of applications. As a voltage-
controlled oscillator (VCO) [12], it can perform all the VCO functions in both electronic and photonic

applications, including generating, tracking, and cleaning RF carriers. The LIMO has the unique property
of actually amplifying injected signals [12] and, thus, may be used in high-frequency carrier regeneration

and signal amplification. Other important potential applications of the LIMO include high-speed clock

recovery [30,31],comb and pulse generation [12], high-gain frequency multiplication, and photonic signal

upconversion and downconversion [32] in photonic RF systems [33,34].
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The performance of a scheme proposed for automated routine monitoring of

deep-space missions is presented. The scheme uses four different tones (sinusoids)

transmitted from the spacecraft (S/C) to a ground station with the positive iden-

tification of each of them used to indicate different states of the S/C. Performance

is measured in terms of detection probability versus false Marm probability with

detection signM-to-noise ratio as a parameter. The cases where the phase of the

received tone is unknown and where both the phase and frequency of the received

tone are unknown are treated separately. The decision rules proposed for detect-

ing the tones are formulated from average-likelihood ratio and maximum-likelihood

ratio tests, the former resulting in optimum receiver structures.

I. Introduction

It has been proposed that automated routine monitoring of deep-space missions be provided by trans-

mitting one out of n (typically r_ = 4) different subcarriers (tones) from the spacecraft (S/C) and then

using a small automated terminal (for example, a 6-m low Earth orbiter terminal (LEO-T)-class) ground

station to ' ' ' " presence Oi- _U_UIIt_U of _1 ...... ;1.1_ _._ TI_n p_,oi_i,,o irl_ntifiont-inn (-,f on('h nf(AeEecL Lne _ 1....... _¢tt.ll iJuoolul_ tv_. . _._ ..................................

the tones at the receiver will indicate different stages of the S/C, for example, S/C healthy, S/C needs

help, S/C is going to transmit telemetry, etc. Since each of these tones is transmitted from the S/C to

the ground over an additive white Gaussian noise (AWGN) channel along with the added possibility of

Doppler distortion, the above-mentioned detection problem to be solved at the receiver can be formulated

as a binary hypotheses test of signal plus noise ve_us noise um_..--'-"In _,,_.............,.,,o_ 1 .... _l,o_.._o;_,_1

is modeled as a constant power sinusoid with unknown [i.e., uniformly distributed on (-rr, rr)] phase

and unknown (i.e., uniformly distributed in some interval (f_, ]:2) governed by the amount of Doppler)

frequency.

The optimum solution to problems of this nature is based upon maximum-likelihood (ML) consid-

erations of the type discussed in VanTrees [1]. In particular, the solution takes the form of a binary

hypothesis likelihood ratio test against a threshold whose value depends on the specified false alarm and

detection probabilities, the available signal power-to-noise spectral density ratio, and the duration of

l This work was performed under a NASA Summer Faculty Fellowship at the Jet Propulsion Laboratory, Communications

Systems and iResearch Section.
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the observation of the hypotheses. We shall see that there are, in principle, two detection/estimation

philosophies suggested by the ML approach, corresponding respectively to what is commonly known as

noncoherent detection, wherein no attempt is made to estimate the unknown parameters prior to detec-

tion, and pseudocoherent detection, wherein an attempt is made to first estimate the parameters (using

an ML approach) and then to use these estimates to aid in the detection process [2]. Since there appears

to be some question about which is the better approach, we shall consider both approaches, discuss their

philosophical differences, and compare their performances.

This article is organized in two parts. In Part 1, we consider the problem of optimally detecting

a sinusoidal signal of known amplitude (power) and frequency but of unknown phase [i.e., uniformly

distributed on (-Tr, Tr)] transmitted from a S/C to the ground over an AWGN channel. In so far as

the optimum receiver design is concerned, the problem will be formulated as a binary hypothesis test of

signal plus noise versus noise only with a single unknown parameter (i.e., carrier phase). In Part 2, we
consider the added possibility of Doppler distortion, which produces an uncertainty in the received carrier

frequency. Once again, the problem can be formulated as a binary hypothesis test of signal plus noise
versus noise only, where now the signal is modeled as a constant power sinusoid with unknown phase and

unknown frequency. Unfortunately, however, the theory for this case is not as well developed in [1] as for

the case where frequency is known. Nevertheless, other researchers [3-6] have examined problems of this

type in the context of frequency-hopped (FH) or direct sequence (DS) spread spectrum communication

systems, and we shall make use of their results wherever appropriate.

Part 1. Known Frequency and Unknown Phase

II. The Average-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Consider the transmission of a fixed (known) amplitude sinusoid with known frequency and unknown

phase over an AWGN channel. As such, the received signal can be modeled over the interval of observation

0 < t < T as corresponding to either of two hypotheses, namely,

_(t) - _(t, 0) + n(t) = v_cos(_ct + 0) + _(t) (la)

when indeed the signal was sent (hypothesis H1) or

r(t) = n(t) (lb)

when the signal was not sent (hypothesis H0). In Eq. (la), P, wc respectively denote the known signal

power and radian carrier frequency, and 0 denotes the unknown carrier phase assumed to be uniformly

distributed in the interval (-Tr, 7r). Also, n(t) denotes the AWGN with single-sided power spectral density

No W/Hz.

The optinmm detection of a signal transmitted over an AWGN channel is the solution to the problem

of finding the likelihood ratio (LR), defined as the ratio of the conditional probability density functions

(pdf's) of the received signal under the two hypotheses, namely,

A(r(t)) _ p (r(t)lH_) (2)
P("(t)lgo)

and then comparing this ratio to a suitable chosen threshold to decide between Ht and H0, i.e.,
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H1

A(r(t)) >

H0

(a)

In the case where all parameters of the signal are known, the evaluation of the numerator and denominator

of Eq. (2) is straightforward, namely,

{J }_ 1 --Noo (r(t) - s(t))2dtp (r(t)lH1) _x/Z_o exp 1
o

{J }_ 1 -_oop (r(t)lHo) _ exp 1 r2(t)d t
o

(4)

When the signal has an unknown parameter, e.g., the phase 0, then to compute the numerator of Eq. (3),

we must first condition the pdf p(r(t)lH1 ) on the unknown parameter (0) and then average over this
parameter, i.e.,

/p(r(t)lH1 ) = p(r(t)lHl,0)po(O)dO (5)
7r

where po(e) denotes the pdf of the unknown parameter 8. In our situation, the phase is assumed to be

completely unknown and, thus, po(e) is a uniform distribution. Also note that this conditioning on the

unknown parameter is now necessary in the denominator of Eq. (3) since the signal does not explicitly

appear in p(r(t)]Ho) [see Eq. (4)]. Hence, combining Eqs. (3) through (5), the average-likelihood ratio
(ALR) 2 becomes

A(r(t))

1 7T

27r f_-_ p(r(t)]H1, O)de

v(_(t)!H.)

1 f-,,_ _1 exp {--A_of[(r(t)-s(t,e))2dt}del

1 .... _ 1 rT 2,,x.ul

_,/_o_ I-_ Jo ' '°'_°l

PT 1 2 r(t)s(t, e)dt dO
= exp --_-_- _ exp

{ PT} 1 f _ {2V'2-P_ T }= exp --_o _,,_,_ exp _ "(0 cos(o.,_t+ e)dt dO (6)

2 We shall refer to this formulation as an average-likelihood ratio (ALR) test to distinguish it from another (in general, less

optimum) approach to be discussed shortly, in which a best (maxinmm-likelihood) estimate of the unknown parameter is

obtained first and then used in the detection process. We shall refer to the latter approach as a maximum-likelihood ratio

(MLR) test. This vernacular is not standard in the literature. What is important to understand here is that the words

average and maxzmum refer to the manner in which the unknown parameter is handled, i.e., the estimation part of the

problem and not the manner in which the decision on the hypothesis is made, i.e., the detection part of the problem. We

shall be more explicit and mathematically precise about these differences later on in the article.
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In arriving at the final result in Eq. (6), we have noted that the term exp {- for r2(t)dt/No } is common

to both the numerator and denonfinator and, thus, cancels, and also that

1 s2(t,O)dt = exp No J0e×p -_ --_o (7)

assunling weT > > 1, as is typically the case. Defining the in-phase (I) and quadrature (Q) correlations

-]oT )_Lc = r(t cos wctdt

P
T

L_ _ / )v/2= r(t sin wctdt
do

then Eq. (6) can be rewritten as

{ PT} 1 f" {2x/_ } { PT} (2v/-PL" _A(r(t)) = exp --_o _._.exp -_o Lcos(0 + a) dO = exp --_o-o Io \ No //
(8)

where

A I Ls
o_ = tail- --

Lc

(9)

Comparing A(r(t)) to a threshold r/is equivalent to comparing In A(r(t)) to In71. Thus, taking the natural

logarithm of Eq. (8), we obtain the equivalent decision rule

Hi

PT
(2X/PL'_ > ln'q+--

lnS°\xo ] <_ No
Ho

(10)

Finally, since In I0(x) is a nlonotonic function of its argument, x, and since PT/No can be absorbed into

tile (lecision threshold, then the, (lecision rule of Eq. (10) call be further simt)lified to

H1

23L >
No _<_

H0

(11)

or, equiwdently,
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Hi

L2 > $2/V_ A
< o _-F=7

Ho

(12)

i.e., the optimum decision of signal present versus signal absent is determined from a comparison of

the output of a square-law envelope detector with a normalized threshold, 7, whose value is determined

from the specifications on false alarm probability and detection probability (see the next section). An

implementation of the decision rule in Eq. (12) is illustrated in Fig. 1.

r (t)

or(,) dt

or(,)dt

>

_<7
Ho

Fig. 1. Average-likelihood (noncoherent) detector for detection of a single sinusoidal
tone with known frequency and unknown phase in AWGN.

B. Performance (Receiver Operating Characteristic)

The performance of the receiver in Fig. 1 is described in terms of its false alarm probability (PF),

defined as the probability of deciding Hi (signal is present) when indeed H0 is true (signal is absent), and

its probability of detection (PD), defined as the probability of deciding Ho (signal is absent) when indeed

H1 is true (signal is present). These probabilities are readily computed from knowledge of the first and
second moments of the Gaussian random variables Lc and L_ [see Eq. (8)] under the two hypotheses,

namely,

g 0 :

H1 :

E{L_} = E{L_} =0

var {Lc} = var {L_} -

E{Lc]O} = pVrP-Tcos0

E{LslO} = _ v/-fiTsin0

var {Lc} : var {Ls} --

NoT

NoT

(13)

To compute Pr, we observe that, under hypotheses H0, L is a Rayleigh random variable (L 2 is a central

chi-squared random variable). Thus,
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fo2" /; 27r(2T/2) Lexp ( L_oT)
PF = Pr{HI[Ho} = Pr{L 2 > 7]H0} = - dLdO

= 2Rexp(-R2)dR = exp - 7 (14)
NoT

Similarly, we observe that, under hypothesis H1, L is a Rician random variable (L 2 is a noncentral

chi-squared random variable). Thus,

/j 1 (L2+ff2_ (2L/3_d LPD = Pr{HllH1} = Pr{L e > 7[H1} = _Lexp NoT J Io \NoTJ

/32 _= (E{Lc[O}) 2 + (E{L_[O}) 2 = PT 2 (15)

= Rexp Io(Rd)dR = Q d,
NoT 2

where

d2 _ 2PT _ 2E (16)
No No

is the detection signal-to-noise ratio (SNR) and Q(a,/3) is the Marcmn Q-function detined by [1]:

_oo (z2+a2)O(c_,/3) = z exp 2 Io(az)dz (17)

Combining Eqs. (14) and (15) and eliminating the normalized detection threshold, one obtains the receiver

operating characteristic (ROC) given by

PD=Q(d,v/--21nPF) (18)

which is illustrated in Fig. 2 for several values of the parameter d (or, equivalently, E/No). Alternatively,

PD is plotted versus d2 with PF as a parameter in Fig. 3.

III. The Maximum-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Although the. exact evaluation of the numerator of the likelihood ratio in Eq. (2), i.e., p(r(t)lHl) is

obtained from the law of conditional probability as described by Eq. (5), namely, conditioning on the

unknown parameter and averaging its distribution, it is also possible to approximate this numerator

by first finding the ML estimate of the unknown parameter and then substituting this wtlue into the

l,robability p(r(t)tH1,0). That is, we approximate p(r(t)lSl) by p (r(t)lSt, OML),"conditional ill which

case the likelihood ratio test (now referred to as the maximum-likelihood ratio (MLR) test) becomes
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Fig. 2. ROC: frequency known and phase unknown.

H1

p(r(t)IH1,0ML) >
A(r(t))_ ,7 (19)

p (r(t)lHo) <

Ho

We refer to this approach of first optimally estimating the phase and then using this estimate to aid

the detection process as pseudocoherent detection. It is important at this point to emphasize that in the

general context of problems of this type, i.e., detection of signals with completely unknown parameters,

the performance of a r'eceiver derived from MLR considerations (e.g., a pseudocoherent receiver) is never

better than the performance of the ALR receiver (e.g., a noncoherent receiver), which is indeed optimum

under the assumed conditions. Thus, at best, one could hope that the MLR receiver would perform equally

well as does the ALR receiver. In the next section, we shall indeed reveal the extent to which this equality

in performance can be achieved for the problem at hand. First, however, let us derive the ML estimate

of ph_e, namely, OML, to be u._ecl in approximating the numerator of the likelihood ratio.

The ML estimate of t0 is defined as

h .... ma_ p(r(t)lHl,0)
o p(r(t)lHo) (20)

Using Eq. (4) in Eq. (20), it is straightforward to show that

OhlL I {/ol: maxexp r(t)s(t, to)dt =maxexp 2 2v/2P T
o _oo o _ r(t) cos (wet + to) dt

= maxexP0 --_-o Lc°s(0 + a)
(21)
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(a) frequency known and phase unknown and (b) frequency
known and phase unknown (expanded view).

where tile envelope, L, and tile phase, c_, are defined by Eq. (9) together with Eq. (8). Since L is

positive and indel)endent of 0, then the maximization required in Eq. (21) is achieved when the argument

of the cosine flmction is equal to zero. Thus,

()ML= -a (22)

An implementation of this ML estimator of the unknown channel phase is illustrated in Fig. 4. Also

illustrated in Fig. 4 is the l)seudocoherent detector that employs this ML phase estimator, which can be

obtained by taking the natural logarithm of Eq. (19). We now find the decision rule based on the MLR

test in Eq. (19) and coral)are it with that of the previously discussed ALR test. Using Eq. (22) in Eq. (19)

gives, by analogy with Eq. (8),
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J2(cos Wct + OML) I
i
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COS _C t

J2sinwct

for(.) dt

H 1

>

<_7
No
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Lc

'i

MAXIMUM-LIKELIHOOD PHASE ESTIMATOR

Fig. 4. Maximum-likelihood phase estimator and pseudocoherent detector.

;,_ 28Lcos(<L+_) : exp-_ oxpL No jA(r(t)) _ exp --_o-o exp N
(23)

Taking the natural logarithm of Eq. (23), we then have, by analogy with Eq. (10),

H1

2v/P > PT
--L lnq4- --
No-_ < .No

Ho

(24)

Since, as previously noted, the term PT/No can be absorbed into the decision threshold, then an equiv-

alent test to Eq. (24) is

H1

2v_ L >
No <_

Ho

(25)

which is identical to Eq. (11)/ Thus, we conclude that in this particular circumstance, the MLR test

(pseudocoherent receiver) and the ALR test (noncoherent receiver) are identical. Hence, the performance

of the pseudocoherent receiver is also described by Figs. 2 and 3. It is to be emphasized again that

the equivalence found here between ALR and MLR receivers is not typical and applies only in this very
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special case of the detection of a signal with known frequency and unknown phase. More often than

not, the receiver derived from the MLR approach will have an inferior performance to the optimum one
derived from the ALR approach.

IV. A More Precise Formulation of the Problem

In reality, the subcarriers that are transmitted to indicate the status of the S/C are continuous square
waves that biphase modulate the carrier. Thus, denoting the carrier radian frequency and phase by wc

and 0c (previously called 0), respectively, and the square-wave subcarrier radian frequency and phase by

ws_ and 0s_, respectively, then the received signal analogous to Eq. (la) is given by

_(t) = s(t, Oc, Os_)+n(t)= _sin w_t+Oc+_ Sq (a_ct+O_) +n(t)

= 2v_ Sq (Wsct + Osc) cos (Wet + Oc) + n(t) (26)

Assuming that the harmonics with frequencies other than the sum and difference of wc and wsc are filtered

out, then in so far as detection is concerned, we may consider the received signal to be 3

r(t) = s(t,O_,O_)+n(t) = x/-fi {cos[(w_ + a_)t + (0_ + Os_)] + cos[(w_ - a3sc)t + (0_ - O_)]}+n(t) (27)

i.e., the problem is to detect the presence or absence of two tones in an AWGN background where both

aJc and 03_¢ are assumed to be known but both 0_ and 0s¢ are assumed to be completely unknown. For

convenience of notation, we shall rewrite Eq. (27) as

r(t) = s(t,o+,o_) + ,,_(t)= v_ {cos[_+t + 0+1+ cos[__t + 0_]} + n(t) (2s)

where

a):t: = 02 c + COsc

O+ _= 0_ + 0_

(29)

At first glance, it might appear that, because the phases Oc and Osc appear in the two signal tones as

their sum and difference, the detection of these tones cannot be performed independently. Interestingly

enough, 0+ _ 0_ + 0_ and 0_ _ 0_ - 0s_ when reduced modulo 27r can be shown to be independent

uniformly distributed random variables (see the Appendix). Thus, as we shall see shortly, the detection

of two distinct sinusoidal tones with independent random phases in an AWGN background can be treated

by a likelihood ratio approach analogous to that discussed in the previous section for a single tone in the
same background.

a In reality, the x/_ 5 amplitude factor m Eq. (27) should be (2v_/Tr)v/-_ = 0.9003x/_ to account for the amplitude of the

first harmonic in the square-wave subcarrier. For simplicity, we shall ignore this minor difference.
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A. The ALR Test

As discussed in Section II, the optimum decision rule is, in general, obtained by applying the average-
likelihood approach, which in this case means averaging the conditional likelihood function over the two

random phases 0+ and 0_. In particular, the conditional pdf of the received signal under hypothesis H1
is analogous to Eq. (5):

f f (1)./._2p(r( tlH1) = p(r( t ) lH1, 0 + , O_ )po+,o_ (0+, O_ )dO +dO_ = p(r( t )lH1, 0+ , O_ )dO +dO_
7r 7r 7r 7r

(30)

and, hence, the ALR becomes

f__,_ f__,_p(r(t)lH1, 0+, O_)dO+dO_

p(r(t)lHo)

i_ex.tNo

x _-_ exp _ r(t) cos(a_+t + O+)dt dO+ (31)

Defining the I and Q correlations for the sum and difference frequencies by

Lc± A r(t)v/-_cosa_+tdt

T

L_+ _= f r(t)v_sinw±tdt
JO

(32)

then, the likelihood function of Eq. (30) can be rewritten as

{"2v'_PL _ I0 /'v/2P '_ (33)

where, analogous to Eq. (9), the envelopes corresponding to the upper and lower subcarrier tones are
given by

L± g _/L_i + L_+ (34)

Alternately, in terms of the log-likelihood function, we arrive at the decision rule
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Hi

lnI0 In _ + -- (35)

So

Note that now, despite the fact that In I0(z) is a monotonic function of its argument, x, we cannot directly

simplify Eq. (35) to a form analogous to Eq. (11). Rather, to get such a form, one must approximate the

In I0(z) function by its series and asymptotic forms for small and large arguments, namely,

x

lnlo(x) _= -_, small x

Ixl, large x

(36)

Thus, for example, if we invoke the small argument approximation of the In Io(x) function in Eq. (35),

we get the decision rule (optimum for small SNR)

Hi

L 2 + L_. _ L 2 >_ = <'7

H0

(37)

where 7 is again a normalized threshold [not necessarily equal to the one defined in Eq. (12)]. The

decision rule in Eq. (37) suggests the ALR structure illustrated in Fig. 5, which is analogous to that given

in Fig. 1. For the large argument approximation of the lnI0(z) function, the ilnplementation of Fig. 5

would require square root devices in each arm entering the final summer prior to the decision device.

B. The MLR Test

Let us now again compare the noncoherent two-tone detector derived from ALR considerations and

specified by the decision rule of Eq. (35) to a pseudocoherent detector that can be derived from MLR

considerations. In particular, consider the joint ML estimates 0ML+, 0ML- of 0+, 0_ defined as

OML+, OML- = max P(r(t)lHl' 0+, 0_)
o+,o_ p(r(t)lHo)

(38)

which, because of the independence of 0+ and 0_, is determined as

= maxexp[ No r(t)cos(w_t+O_)dt exp -_0 r(t) cos(co+t+O+)dtOML+' OML- 0__,0_

= No - '1,No +cos(O+
(39)

where (_± arc defined in terms of L±, analogous to Eq. (9). The solution to Eq. (39) is

t}ML± = --a± (40)
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r (t)

,/2 cos w+t

sinw+t

---<,

T(') dt

T(=)dt

H,
>

_<7
No

Fig. 5. Average-likelihood (noncoherent) detector for detection of a pair of independent
sinusoidal tones with known frequencies and unknown phases in AWGN.

which, when substituted in Eq. (39), gives

exp - 0C+ exp _ =exp

Taking the natural logarithm of Eq. (40), we get the decision rule

_ PT_0 } exp _ 2x/-P L/LYo J
(41)

H1

> PT

_(L+ + L_) ln,1 + -- (42)_< No
Ho

Comparing Eq. (42) with Eq. (35), we observe that, in the two-tone case, the MLR test (which would

lead to a pseudocoherent form of detector analogous to Fig. 4) is not the same as the ALR test. However,

using the large argument approximation of the lnI0(x) function as given by Eq. (36), we see that the

ALR and MLR tests once again become equivalent. In summary then, we observe that, for detection of

a single tone in AWGN, the ALR (noncoherent) test and MLR (pseudocoherent) test are equivalent for

all SNRs, whereas for the detection of a pair of equal power tones in AWGN, the ALR and MLR tests

are equivalent only at sufficiently large SNR.

C. Performance (Receiver Operating Characteristic)

The performance of the low SNR receiver in Fig. 5 is, as before, described in terms of its false alarm

probability (Pr) and its probability of detection (PD). These probabilities are readily computed from
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knowledge of the first and second moments of the Gauss±an random variables Lc+ and Ls± [see Eq. (31)]
under the two hypotheses, namely,

H0: E{Lc±} = E{Ls±} =O

NoT
var {Lc±} = var {n_i} -

/-g

Hi: E{Lc±l O} = V2 Tc°s0± (43)

E{Lsil O} = _/-_Tsin0i

NoT
var {Lc±} : var {Lsi} - 2

To compute PF, we observe as before that, under hypothesis H0, L 2 is a central chi-squared random

variable (now with two more degrees of freedom). Thus,

PF = Pr{gllgo}= Pr{n2>TIH0}= rexp(-r)dr= 1+ y exp - 3 (44)
/N.T

Similarly, we observe that, under hypothesis H1, L 2 is a noncentral chi-squared random variable (now

with two more degrees of freedom). Thus,

No =Pr {H11H1} = Pr {L 2 > _,IH_} = R
NoT

R2 + d2)exp - 2 I1 (Rd)dR

(45)

where d 2 is the detection SNR defined as before [see Eq. (16)] and QM (ct,/3) is the generalized Marcum

Q-function defined by

j(oc (z)M_ 1 ( Z2 q_Ol2)QM (Oz,/3) = Z exp 2 Iv_l(az)dz (46)

Note that QM(a,/3) can be obtained from Q(a,/3) _ Ql(a,/3) by the relation [2, Appendix 5A]

QM(O_,/3) Q(a,/3) + exp (c_2 + _2) _t (_-) j= Ij (a/3)
2 3=1

Unfortunately, the normalized detection threshold cannot be explicitly eliminated in Eqs. (39) and (40)

to give a closed-form expression for the receiver operating characteristic (ROC) analogous to Eq. (18).

However, for any range of interest, the ROC can be determined numerically. Such numerical results are
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superimposedonthesingle-tonedetectioninFigs.2,3(a),and3(b). Weobservethat theperformance
penaltyassociatedwithusinga pairof subcarriertoneseachwith halfthetotal powerrelativeto the
full-powersinglecarriertonecaseisquitesmall,e.g.,ontheorderof 0.4dBor lessforPF = 10 -2 and

on the order of 0.3 dB or less for Pr = 10 -4. The degradation associated with the true optimum ALR

scheme as described by the decision rule of Eq. (35) would be even smaller. Thus, the performance curves

of the true optimum ALR scheme for two tones would lie between the solid and dashed curves in Figs. 2,

3(a), and 3(b) since indeed these performance results cannot beat those corresponding to the single-tone

case. Because of the small degradations involved, we choose not to simulate the true optimum case.

Part 2. Unknown Frequency and Unknown Phase

V. The Average-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Consider the transmission of a fixed (known) amplitude sinusoid with unknown frequency and unknown

phase over an AWGN channel. Analogous to Eq. (1), the received signal can be modeled over the interval

of observation 0 < t < T as corresponding to either of two hypotheses, namely,

7-(t)= s(t,o) + _(t) = v_cos(_t + 0) + n(t) (47a)

when indeed the signal was sent (hypothesis H1) or

r(t) = n(t) (47b)

when the signal was not sent (hypothesis H0). In addition to the previously defined parameters, in

Eq. (47a), f A=w/27r denotes the unknown carrier frequency assumed to be uniformly distributed in the

interval (fc - B/2, fc +B/2), where as before fc denotes the nominal carrier frequency (i.e., in the absence

of Doppler). When the signal has two unknown parameters, e.g., the phase 0 and frequency f, then to

compute the numerator of Eq. (3), we must first condition the pdf p(r(t)IH1) on both of the unknown

parameters and then average over them, i.e.,

= fY<:+B/2S?p(r(t)IH1) JI_-B/2 _ p(r(t)lH1, O, f)po(O)pf(f)dOdf
(48)

where po(O),pf(f) respectively denote the pdf's of the unknown parameters 0 and f. In our situation,

the phase and frequency are assumed to be completely unknown, and thus po(O) and PI(f) are uniform

distributions. Hence, combining Eqs. (3) and (48), the average-likelihood ratio (ALR) becomes

A(r(t))

1 fs'+B/2S?27rB Jf_-B/2 _ p(r(t)lH1, 0, f)dOdf
z

p(r(t)lHo)

II }"r l i"+Bi i:oxpf<2'l- - .oe,
: exp -N--o-o _ JL-BI2 _,-_ I, No

= 1 fI<+BI2 Io (2_L(f)_ df (49)
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where

L(f) _v/L_(f)+ L_(f) (50)

with

}Lc(f) _ r(t)v/2cos27rftdt

T

L_(f) _= fo r(t)v_sin2rcftdt

(51)

It should be noted that L(f) is nothing more than the magnitude of the complex Fourier transform (FT)

of r(t) in the interval 0 < t < T. If r(t) is band limited to W Hz, then for large WT, the real and

imaginary components of this complex FT, namely, Lc(f), Ls(f) can be approximated by the discrete

Fourier transforms (DFTs)

2WT

2 1 n n

n=l

21VT

2 1 n n

(52)

Comparing A(r(t)) to a threshold produces (after suitable normalization) the ALR decision rule

H1

 o\x ° ]v ,,Jf,-B/2 <_

Ho

Since Eq. (53) is overly demanding to implement, one discretizes the frequency uncertainty interval into

G = B/T- 1 = BT subintervals to each of which is associated a candidate frequency fi; i = O, 1, 2,. • •, G-1

located at its center. As such, the integration over the continuous uncertainty region in Eq. (53) is

approximated by a discrete (Riemann) sum and, hence, the approximate decision rule becomes

HI
G-1

/=0

H0

which has the imlfiementation representation of Fig. 6. It is important to understand that spacing the

frequencios f,_;z = 0, 1, 2,..., (7 - 1 by lIT guarantees independence of the noise components that appear

at the output of each spectral estimate channel. However, orthogonality of the signal components of these

same outputs depends on the true value of the received frequency relative to the discretized frequencies

fi; i - 0, 1, 2,.. •, G- 1 assumed for implementation of the receiver. That is, if the true receiw,d fl'equency

happens to fall on one of the fi's, then a signal component will appear only in the corresponding spectral

84



0th ENVELOPE DETECTOR

i th ENVELOPE DETECTOR

r(t)

i t

t

I

_oT(o)dt

_oT(o)dt

G- 1st ENVELOPE DETECTOR

>

<q

No

Fig. 6. Average-likelihood (noncoherent) detector for detection of a single sinusoidal tone with unknown frequency and
unknown phase in AWGN.

estimate channel, i.e., all other channels will be noise only. On the other hand, if the true received

fl'equency falls somewhere between two of the fi's, then we have a loss of orthogonality in that a spillover

of signal energy occurs in the neighboring spectral estimates. The worst-case spillover would occur when

the true received frequency is midway between two of the f_'s.

We conclude this section by noting that a decision metric similar to Eq. (54) arises in the study of

FH or DS/low probability of intercept (LPI) optimum ALR (noncoherent) detection [3-5], where in the
FH case, f_; i - 0, 1, 2,.-., G - 1 corresponds to the G possible frequencies that the transmitted signal

can hop to and the detection is based on observation of a single hop of duration TH = T, and in the DS

case G is the number of possible code sequences that can occur in the observation interval. Many of the

results obtained from these works are directly applicable to the problem at hand.

B. Performance

It is tempting for large values of G (as is typically the case) to apply a central limit theorem argument

to the left side of Eq. (11), i.e., approximate it as a Gaussian random variable in so far as computing the
receiver operating characteristic associated .,, _1_:_ .]_:_;_ • [A] ITnf,_rt-l,nnt-oly, it W_S shown in [5]Wlbll blllb tlt:;t_l_lUll rule t_j. _ ................ L ,

that following such an approach is very poor when compared with results obtained from simulation or

numerical methods applied to the true decision rule of Eq. (11), even for values of G as large as 1000 or

10,000. In fact, it is stated in [5] that G on the order of "ten thousands is not guaranteed to be large

enough to validate the Gaussian approximation." Thus, to obtain the true receiver performance, we too

must resort to simulation and/or numerical methods, such as those suggested by Requicha [7], wherein

the characteristic function and fast Fourier transforms (FFTs) are used to compute approximate values

of the distribution function associated with the left-hand side of Eq. (11). More about this later on.
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VI. The Maximum-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Although the exact evaluation of the numerator of the likelihood ratio in Eq. (2), i.e., p(r(t)lH1 ) is

obtained from the law of conditional probability as described by Eq. (5), namely, conditioning on the

unknown parameters and averaging over their distribution, it is also possible to approximate this numer-

ator by first finding the ML estimates of the unknown parameters and then substituting these values into
the conditional probability p(r(t)IH1, O, f). That is, we approximate p(r(t)[Hx) by p(r(t)]H1, OML, ?ML),

in which case the likelihood ratio test (now referred to as the maximum-likelihood ratio (MLR) test)
becomes

( )H1p r(t)IHI,OML, _L >
A(r(t)) _ (55)

p(r(t)lHo ) <
Ho

where

OML, fun A=max P(r(t)lHl' O, f)
o,y p(r(t)lHo )

(56)

The maximization over 0 required in Eq. (56) can be performed identically to that in Section III [see

Eq. (23)]:

max p(r(t)lHl'O'f) exp(PT) (2V/PL(f)_ (57)
o p(r(t)lHo) = --_0-0 exp \ No .]

where L(f) is as defined in Eq. (50). Thus, the optimum maximum a posteriori (MAP) decision rule
becomes

HI

maxy exp --_0 exp \ N0 ] -<
Ho

(58)

Since the exponential is a monotonic function of its argument, we have the equivalent decision rule 4

HI

max L(f)I _<v/_>

H0

(59)

which results in a spectral maximum form of receiver. Again, because of the excessive demand placed on

the iulplementation by the need to evaluate Eq. (59) over a continuum of frequencies, we again quantize
the frequency uncertainty interval into G = BT subintervals, each with an associated candidate frequency

4 We define the normalized threshold equal to vf5 to be consistent with the notation used in Part 1. In this way, when G

is equated to unity, then our results obtained here will reduce to those given in Part 1 for the MLR decision rule.
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f,; i = 0, 1, 2,..., G- 1 located at its center. Thus, the frequency continuous decision rule of Eq. (59) can
be approximated by the decision rule

H1

>

max L(fi) <

H0

v_ (60)

which suggests the receiver of Fig. 7. Here again, as with Eq. (54), the orthogonality of the spectral

estimates is not guaranteed unless the frequency of the received signal falls on one of the fi's. Also, since

L(f,); i = 0, 1, 2,--., G represents a uniform sampling of L(f), then in view of Eq. (52), we can implement
Fig. 7 with FFT techniques.

I

I

I
----4
r(t)

I

I

I

Oth ENVELOPE DETECTOR

ith ENVELOPE DETECTOR

loT(e) dt

loT(o)dt

G - 1st ENVELOPE DETECTOR

"i

I

I

I

I LO'_)

I =

I

I

I-_

CHOOSE

Lmax = m/ax L (.fi)

Fig. 7. Maximum-likelihood detector for detection of a single sinusoidal tone with unknown frequency and
unknown phase in AWGN.

B. Performance

The performance of the MLR decision rule of Eq. (60) can be obtained analytically since the pdf of

G independent random variables can be explicitly written in terms of the pdf's of individual random

variables, which in turn are obtained from the results in Part 1. The procedure is as follows.

1. Best-Case Performance. Consider first the optinfistic (best) case, where the actual received

carrier frequency is indeed equal to one of the G frequencies, say fk used to approximately implement

the optimum decision rule as per the discussion following Eq. (59). Under H1, G - 1 of the L(fi)'s are

Rayleigh distributed with pdf [see Eq. (14)]

(L2)-£-2L -PL(/,)(L) = NoT exp ; L > 0 (61)
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and the single L(fi) that is associated with the received signal carrier frequency, namely L(fk), is Rician

distributed with pdf [see Eq. (15)]

2 ( L2+ (2L9 92 (621PD(A)(L) = _o-ToTexp - _VoT ] I0 k,N---_oT,/' L >_ 0, = PT 2

Let P_ denote the per frequency channel false alarm probability, i.e.,

P_ = Pr{L(fi) > v/-_lH0} = Lexp - dL = exp - (63)
No1

which is independent of fi. Then, the overall false alarm probability, PF, is given by

PF = Pr {maxL(fi)> v_lHo}

= 1 - Pr {L(fo) <_ v_,L(I1) <_ v_,'",L(fc-1) <_ v_lHo}

G-I G-1

= 1- H Pr{L(f{)_< x/_tHo} : 1- H (1- Pr{L(f.i) > v/-_lHo})
i=0 i=0

= 1- (1-P_)G = 1- 1-exp -N_0T (64)

Since, under H1, G - 1 of the spectral estimates (i.e., the ones containing noise only) have the same pdf,

namely Eq. (61), as under H0, and one spectral estimate has the Rician pdf of Eq. (62), then the overall

probability of detection, Pal, is determined from

G-1

PD = Pr {maxL(f.,) > v/_IH_} = 1- H (1 - Pr {L(f._) > v/_lH1}) = 1-(1 _ p_)G-1 (1 -P_) (65)
i=0

where P_ corresponds to the detection probability of the single-frequency channel containing the signal,

i.e.,

P; = Pr {L(f_) > v_iH1} = O d, =

Substituting Eqs. (63) and (65) into Eq. (66) gives

2"y
PI) = 1-(1-exp \( "[_'_G-1Q1-QQd,_))-_.].] (67)

or, equivalently, the overall probability of miss, PM, is
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( ( 7 27
PM=I-PD= 1-exp - 0T 1-Q d, (6S)

Note that, for G = 1, Eqs. (64) and (67) reduce, respectively, to Eqs. (14) and (15).

The ROC can be determined by eliminating the normalized threshold between Eqs. (64) and (67), in
which case one obtains

2. Worst-Case Performance. The worst-case performance occurs when the actual received carrier

frequency is indeed midway between two of the G frequencies used to approximately implement the

optimum decision rule as per the discussion following Eq. (59). Under H0, the false alarm performance is

still described by Eq. (64). However, under H1, all G spectral estimates are now Rician distributed with

pdf's of the form in Eq. (62), namely,

PL(I,)(L) = Lexp NoT Io kNoT.] , _

where the ¢_i's are determined as follows. Since [see Eq. (15)]

_ _= (E {Lc(fi)lO, f}) 2 + (E {Ls(fJlO, f}) 2 (71)

then, assuming that the actual received carrier frequency, f, is situated midway between fk and fk+l,

which are separated by 1/T, i.e., f = fk + 1/2T, Eq. (70) is evaluated as (for simplicity, we ignore the

edge effects at the ends of the frequency uncertainty band)

/3_ = PT 2 -/ 5 = . , _ ,

[ Trek-i+2) J [pTe(_) -(1

i=k,k+l

, 2

i )+2(-k-i) ; i#k,k+l

A 2 (72)= PT Fi

Finally then, analogous to Eq. (70), the detection probability would be given by

PD = 1 -- H 1 -- Q r_d, (7a)
i=0

which, in general, depends on fk, i.e., the location of f within the uncertainty band.

It has been suggested in [5] that the two nearest spectral estimates (envelopes) to the frequency
location of the received signal dominate the performance, i.e., the spillover effect of signal in the other
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frequencyslotscanbeignoredto afirst-orderapproximation.Whenthis isdone,then,underH1, two of

the spectral estimates are identically Rician distributed and the remaining G - 2 are identically Rayleigh

distributed. In this case, Eq. (73) is replaced by an expression somewhat like Eq. (67), namely,

PD : 1- (1- exp (-_oT)) (l-Q((2) d,u-ff_oT] ]

which is now independent of the frequency location of the signal. Combining Eqs. (64) and (74), the

ROC is approximately given by

PD 1 (1 PF)(G-2)/G(1 Q((2) d,v/-21n(1 (1 PF)I/G))) 2...... (75)

VII. A More Precise Formulation

As discussed in Section IV of Part 1, the true transmitted signal corresponds to a sinusoidal carrier

phase modulated by a square-wave subcarrier of radian frequency cost. At the receiver, the harmonics

with frequencies other than the sum and difference of wsc and w_ are filtered out, which means that in so

far as detection is concerned, the received signal in the absence of frequency uncertainty can be modeled
as

r(t) = s(t, Oc,0_) + 'n(t) = v/-fi{cos [(_o_+ _)t + (0_ + 0sc)] + cos [(C0c- wsc)t + (0_ - 0_)]} + n(t)

(76)

In the presence of frequency uncertainty due, for example, to Doppler shift, both the upper and lower

frequency tones in Eq. (76) will be shifted from their nominal values with the higher-frequency tone

experiencing a larger shift than that corresponding to the lower-frequency tone. If, however, the subcarrier

frequency is much smaller than the carrier frequency, i.e., wsc << w_, as is the case of interest, then for all

practical purposes, one can associate the frequency uncertainty with the carrier as discussed in Section V.A

and assume to a first-order approximation that both upper and lower frequency tones experience the same

frequency shift. Stated another way, we can assume that, in so far as detection is concerned, we observe

a pair of tones whose frequencies are unknown (but by the same amount), each in a band B Hz centered

around its nominal value. Furthermore, the uncertainty band is assumed to be very narrow with respect

to the subcarrier frequency, i.e., B << fsc.

A. The ALR Test

Analogous to what was done in Part 1, the conditional pdf of the received signal under hypothesis H1

is given by

(1)2 l fL+B/2f_ i:P(r(t)lH1)= _ "U Jf,.-I3/2 J-,r _P(r(t)lHl'O+'O-'f - fs_'f + fs_)dO+dO-df
(77)

wheroupon the ALR becomes

l ff '`+u/2 (__2_ L (f)'_ (____2_ )Io Io \ No L+(f) df
(78)
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In Eqs. (77) and (78), the spectral envelopes at the lower and upper tones are defined by

L+(f) zx _L2:k(f) + L_+(f) (79)

together with

L_+(f) _ fo r(t)v/2c°s[27r(f + dt

Ls±(f) _- r(t)g2sin[2rc(f + Lc)t]dt

(8o)

Discretizing the integration interval results in the approximate decision rule

)E Io L+(f_) Io L-(fi)
i=O

H1

>

<_

Ho

(81)

where the spectral envelopes required in Eq. (81) are defined analogously to Eqs. (79) and (80), with the
continuous random variable f replaced by the discrete random variable fi; i = 0, 1,- • •, G - 1. As was

the case for the single-tone result in Section V.A, the performance (ROC) of the decision rule in Eq. (81)
cannot be obtained analytically.

B. The MLR Test

Without going into great detail, it is straightforward to show (using the results of Section IV.B) that
the MLR test analogous to Eq. (58) becomes

Hi

max exp exp n+(f) exp. n_(f)
f . , , --

Mo

(82)

or, equivalently,

H1

>

max(L_(f) + L+(f)) < v'_f
Ho

(83)

which has the discretized version

H1

>

max(L_(fi) + L+(f)) <

Ho

(84)
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Unfortunately, the performance of the receiver that implements the decision rule of Eq. (84) also cannot

be obtained analytically.

VIII. Numerical Results

Since the performance of none of tile ALR optimum decision rules can be evaluated analytically and

since the same is true for some of the MLR decision rules, a computer simulation of these metrics has

been developed to numerically evaluate such performance. The results of such simulations are described

as follows. Figure 8 is a sample illustration of the ROC for the case of a single tone with unknown phase

and frequency (as described in Section V) and a detection SNR d 2 = 2PT/No = 6 dB. Both ALR and

MLR cases are illustrated, corresponding, respectively, to the decision rules of Eqs. (54) and (60). Also,

both the best- and worst-case input frequency scenarios are considered, corresponding, respectively, to the

cases where the actual input frequency is indeed equal to one of the G frequencies used to approximately

implement the decision rule and the case where the actual input frequency falls midway between any

two of these G frequencies. Clearly, the actual system performance corresponding to an input frequency

arbitrarily chosen in the uncertainty band will lie between these two performance bounds. We observe

from the results in Fig. 8 that the difference between best- and worst-case performance is relatively small,

as well as is the difference between the ALR (optimum) and MLR (suboptimum) decision rules. There

is a significant difference, however, between the performance for G = 10 and G = 100, indicating the

sensitivity of the performance degradation to a factor of 10 increase in frequency uncertainty. Also,

comparing Fig. 8 with the analogous curve in Fig. 2, corresponding to the case of unknown phase but

known frequency, we again see a rather significant degradation in performance when the frequency is

unknown even by only a factor of 10 relative to the observation bandwidth (reciprocal of the observation

time, T), i.e., G = 10.
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o
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_/" d 2 = 6 dB
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I I I I

0.2 0.4 0.6 0.8 1.0

FALSE ALARM PROBABILITY, PF

Fig. 8. ROC: frequency and phase unknown (single-tone)
simulation results.

As wu'ification of the MLR sinmlation results, we present in Fig. 9 the analogous analytical results

obtame(i from E(ts. (69) and (75). I/ecall that in arriving at Eq. (75) the assumption was made that

tim energy spillover effect of the signal into the other frequency slots is dominated by the two adjacent

ones. Thus, ignoring edge efl'ects, it. was not necessary to average over all possible worst-case (mid-

way) input frequency positions. In the (:omputer silnulation, this assumption was not invoked, as the

input frequency was allowed to occur midway between an_j two adjacent frequencies. Despite this analysis
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approximation, however, comparison of the results in Figs. 8 and 9 reveals excellent agreement between

analysis and simulation, i.e., the assumption of only adjacent signal energy spillover used to arrive at

Eq. (75) has been justified. Also indicated in Fig. 8 is the analytical result corresponding to known phase

and frequency (recall that this result is the same for both MLR and ALR) that allows a more direct

assessment of the performance degradation due to lack of perfect frequency knowledge.

Since the curves in Fig. 8 are drawn for a fixed value of detection SNR d2 = 2PT/No, then assuming

that P/No is specified, this implies that the observation interval, T, is also held constant. Thus, changing

the value of G = BT from 10 to 100 directly translates into a change by a factor of 10 in the frequency

uncertainty region B, which accounts for the observed degradation in performance. Another interpretation

of the numerical data can be obtained by again holding P/No fixed but observing the effect on system

performance of increasing T for a fixed frequency uncertainty region B. This necessitates plotting the
ROC with both d 2 and G increasing linearly with T. Such a plot for the ALR decision rule with best-case

input frequency is illustrated in Fig. 10, where the ROC is plotted for values of G = 10, 20, 40, and 80 (T
increasing by a factor of 2) and corresponding values d 2 = 6, 9, 12, 15 dB. To directly see the dependence

of MLR system performance on detection SNR, Fig. 11 illustrates the behavior of detection probability,

PD, versus detection SNR, d2, for a fixed false alarm probability, PF = 10 -2, and values of G = 10 and

100. These curves are obtained from numerical evaluation of the analytical results in Section VI. Since

along any curve G is held fixed, one can interpret these results as keeping the frequency uncertainty band,

B, and observation time, T, fixed and observing the change in performance as P/No is varied.

The penalty associated with detecting a pair of subcarrier tones (each at half the total transmitted

power) as opposed to a single carrier tone (at full transmitted power) is illustrated by the numerical
results in Fig. 12. Here we plot the ROC for both the single- and double-tone cases for the ALR decision

rule with best-case input frequency and a detection SNR equal to 6 dB. The results for the single-tone

case are taken directly from Fig. 8. We observe a significant performance penalty associated with using a

double-tone detection scheme. Figure 13 illustrates for the double-tone detection scheme results analogous

to Fig. 10 for the single-tone detection scheme. Here again, by comparing the two figures, we observe a

significant penalty associated with using a pair of equal half-power subearrier tones rather than a single

tone at full power.
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Fig. 10. ROC simulation results: frequency and phase unknown
(single tone), ALR, best-case input frequency.
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ALR, best-case input frequency.
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Appendix

On the Independence of the Sum of Difference of Two Uniformly
Distributed Random Variables Modulo

Consider two independent random phases OA and OB that are each uniformly distributed in the semi-

closed interval [-Tr, 7r). Define the sum and difference of these two random variables by

O+ = OA + OB

0'_ _= OA -- OB

and the modulo 27r versions of these random variables by

0+ _-A (0/+)rood 27r = (OA -_- 0B)mod 27r /

/0_ _ (0__)mod 2_ = (0A -- 0B)mod 27r

(A-2)

The probability density functions (pdf's) of 0__ and 0; are triangular in the semiclosed interval [-27r, 2_r),
i.e., they are the convolutions of two uniform pdf's, whereas the pdf's of their modulo 27r reduced versions,

0+ and 0_, are once again uniformly distributed in [-Tr, 70 (see Fig. A-l). We would now like to show
that 0+ and 0_ are indeed independent random variables. To do this, we shall show that the conditional

pdf Po_ (0_ [0+) satisfies Po_ (0_ [0+) = Po_ (0_), i.e., it is a uniform distribution in [-% 7r). Similarly, it

can be shown that po+(O+[O_) = po+(O+).

Let 0+ be any positive value in its region of definition, i.e., 0 <_ 0+ <_ yr. Then, 0 A and 0B are related
as follows:

{ --OA + O+ -- 27r, --Tr < OA < --Tr + O+OB =- --0 A + 0+, --7r q-O+ _ 0A _ 7r
(A-3)

From Bq. (A-l), we find that

a' -- fl 20A -- O+ + 27r, --Tr < OA <_ --Tr + O+ (A-4)
v_ [ 20A -- 0+, --Tr -t- O+ _- OA _- "it

Thus, from Eq. (A-4) and the fact that O A is uniform in the interval [-7r, 7r), the conditional pdfP02 (0210+)

appears as in Fig. A-2(a). Reducing 0__ modulo 27r produces the conditional pdf Po_ (0_ 10+) as illustrated

in Fig. A-2(b), i.e., a uniform distribution in the interval [-Tr, 7r) Q.E.D.
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Fig. A-1. The PDF of the sum and difference of (a) two uniformly distributed random variables and (b) two
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Fig. A-2. Conditional PDF of the sum and difference of (a) two uniformly distributed random variables
and (b) two uniformly distributed random variables reduced modulo 21:.
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In this article, we design new turbo codes that can achieve near-Shannon-limit

performance. The design criterion for random interleavers is based on maximizing

the effective free distance of the turbo code, i.e., the minimum output weight of
codewords due to weight-2 input sequences. An upper bound on the effective free

distance of a turbo code is derived. This upper bound can be achieved if the feedback

connection of convolutional codes uses primitive polynomials. We review multiple

turbo codes (parallel concatenation of q convolutional codes), which increase the

so-called "interleaving gain" as q and the interleaver size increase, and a suitable

decoder structure derived from an approximation to the maximum a posteriori

probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent

codes to be used in the turbo encoder structure. These codes, for from 2 to 32

states, are designed by using primitive polynomials. The resulting turbo codes have
rates b/n, b=l, 2, 3, 4, and n=2, 3, 4, 5, 6 and include random interleavers for better

asymptotic performance. These codes are suitable for deep-space communications

with low throughput and for near-Earth communications where high throughput is
desirable. The performance of these codes is within 1 dB of the Shannon limit at a

bit-error rate of 10 -6 for throughputs from 1/15 up to 4 bits/s/Hz.

I. Introduction

Coding theorists have traditionally attacked the problem of designing good codes by developing codes
with a lot of structure, which lends itself to feasible decoders, although coding theory suggests that

codes chosen "at random" should perform well if their block sizes are large enough. The challenge
to find practical decoders for "almost" random, large codes has not been seriously considered until

l_c_,_,y, l _,._._ _,,_ cxcltmg _A p_H_lly imnnrtant development in codin_ theory in recent

years has been the dramatic announcement of "turbo codes" by Berrou et al. in 1993 [7]. The announced
performance of these codes was so good that the initial reaction of the coding establishment was deep

skepticism, but recently researchers around the world have been able to reproduce those results [15,19,8].
The introduction of turbo codes has opened a whole new way of looking at the problem of constructing

good codes [5] and decoding them with low complexity [7,2].

Turbo codes achieve near-Shannon-limit error correction performance with relatively simple component

codes and large interleavers. A required Eb/No of 0.7 dB was reported for a bit-error rate (BER) of 10 -S

for a rate 1/2 turbo code [7]. Multiple turbo codes (parallel concatenation of q > 2 convolutional codes)

and a suitable decoder structure derived from an approximation to the maximum a posteriori (MAP)

probability decision rule were reported in [9]. In [9], we explained for the first time the turbo decoding
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schemeformultiplecodesandits relationtotheoptimumbit decisionrule,andwefoundrate1/4turbo
codeswhoseperformanceiswithin0.8dBofShannon'slimit at BER=10-5.

In thisarticle,we(1)designthebestcomponentcodesforturbocodesofvariousratesbymaximizing
the "effectivefreedistanceof the turbocode,"i.e.,the minimumoutputweightof codewordsdueto
weight-2inputsequences;(2)describea suitabletrellisterminationrulefor b/n codes; (3) design low

throughput turbo codes for power-limited channels (deep-space communications); and (4) design high-

throughput turbo trellis-coded modulation for bandwidth-limited channels (near-Earth communications).

II. Parallel Concatenation of Convolutional Codes

The codes considered in this article consist of the parallel concatenation of multiple (q >_ 2) con-

volutional codes with random interleavers (permutations) at the input of each encoder. This extends

the original results on turbo codes reported in [7], which considered turbo codes formed from just two

constituent codes and an overall rate of 1/2.

Figure 1 provides an example of parallel concatenation of three convolutional codes. The encoder

contains three recursive binary convolutional encoders with ml, m2, and ma memory cells, respectively.

In general, the three component encoders may be different and may even have different rates. The first

component encoder operates directly (or through 7rl) on the information bit sequence u = (_tl,..., UN)

of length N, producing the two output sequences x0 and xl. The second component encoder operates

on a reordered sequence of information bits, u2, produced by a permuter (interleaver), rr2, of length N,

and outt)uts the sequence x2. Similarly, subsequent component encoders operate oi1 a reordered sequence

of inforlnation bits. The interleaver is a pseudoraudom block scrambler defined by a permutation of N

elements without repetitions: A complete bh)ck is read iuto the the interleaver and read out in a specified

(fixed) random order. The same interleaver is used repeatedly for all subsequent blocks.

Figure 1 shows an example where a rate r = 1/n = 1/4 code is generated by three component codes

with memory ml = m2 = m:_ = m = 2, producing the outputs x0 = u, xl = u • 91/9o, x2 = u2 • 91/9o,

and x3 = u3.91/9o (here 7rl is assumed to be an identity, i.e., no pernmtation), where the gene.rator

polynomials 9o and g_ have octal representation (7)oa_Z and (5)o_t_z, respectively. Note that various code

rates can be obtained by proper puncturing of Xl, x2, x3, and even x0 (for an example, see Section V).

We use the encoder in Fig. 1 to generate an (n(N + m), N) block code, where the m tail bits of code 2

and code 3 are not transmitted. Since the component encoders are recursive, it is not sufficient to set
the last m information bits to zero in order to drive the encoder to the all-zero state, i.e., to tc.r'miTmtc

the trellis. The termination (tail) sequence depends on the state of each component encoder after N

bits, which makes it impossible to terminate all component encoders with m predetermined tail bits.
This issue, which had not been resolved in the original turbo code implementation, can be dealt with

by applying a simple method described in [8] that is valid for any number of component codes. A more

complicated method is described in [18].

A design for constituent convolutional codes, which are not necessarily optimum convolutional codes,

was originally reported in [5] for rate 1/7z codes. In this article, we extend those results to rate b/'_t

co<les. It was suggested (without proof) in [2] that good random codes are obtained if 9, is a primitive

l)olynomial. This suggestion, used in [5] to obtain "good" rate 1/2 constituent codes, will be use<t in this

artich; to obtain "good" rate 1/3, 2/3, 3/4, and 4/5 constituent codes. By "good" codes we mean codes

with a maximum effective free distance d+f, those codes that maximize the minimum output weight for

weight-2 input sequences, as discussed in [9], [13], and [5] (because this weight tends to dominate the

perforulance characteristics over the region of interest).
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ENCODER 1

u2

u3

ENCODER 3

Fig. 1. Example of encoder with three codes.

==x3

III. Design of Constituent Encoders

As discussed in the previous section, maximizing the weight of output codewords corresponding to

weight-2 data sequences gives the best BER performance for a moderate bit signal-to-noise ratio (SNR)

as the random interleaver size N gets large. In this region, the dominant term in the expression for bit

error probability of a turbo code with q constituent encoders is

Pb _ Nq_ 1 .1,2

where dP,2 is the minimum parity-weight (weight due to parity checks only) of the codewords at the

output of the jth constituent code due to weight-2 data sequences, and/3 is a constant independent of

N. Define dj,2 = dP,2 + 2 as the minimum output weight including parity and information bits, if the jth

constituent code transmits the intbrmation (systematic) bits. Usually one constituent code transmits the

information bits (j = 1), and the information bits of others are punctured. Define de/ q P= )-:Q=I dj,2 + 2 as

the effective free distance of the turbo code and 1/N q-1 as the "interleaver's gain." We have the following

bound on d_ for any constituent code.

Theorem 1. For any r = b/(b + 1) recursive systematic convolutional encoder with generator matrix

hi(D)

ho(D)

h2(D)

c = ho(D)
Ibxb

hb(D)

ho(D)
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where Ibxb is a b x b identity matrix, deg[hi(D)] < m, hi(D) 7i h0(D), i = 1, 2,..., b, and ho(D) is a

primitive polynomial of degree m, the following upper bound holds:

2rn,-- 1

< [T j+ 2

Proof. In the state diagram of any recursive systematic convolutional encoder with generator matrix

G, there exist at least two nonoverlapping loops corresponding to all-zero input sequences• If ho(D) is a

primitive polynomial, there are two loops: one corresponding to zero-input, zero-output sequences with

branch length one, and the other corresponding to zero-input but nonzero-output sequences with branch

length 2 m - 1, which is the period of maximal length (ML) linear feedback shift registers (LFSRs) [14]

with degree m. The parity codeword weight of this loop is 2 m-l, due to the balance property [14] of ML

sequences. This weight depends only on the degree of the primitive polynomial and is independent of

hi(D), due to the invariance to initial conditions of ML LFSR sequences. In general, the output of the

encoder is a linear function of its input and current state. So, for any output we may consider, provided

it depends on at least one component of the state and it is not ho(D), the weight of a zero-input loop is

2 m-l, by the shift-and-add property of ML LFSRs.

A

A
J

Ul i
)
B

, h20

hlO

h00

alO

(

h21

hll

h22

h12

h02 __

21

a12

)_= /\

,.x 2
h23

x 1
h13

-4- _03

)
Fig. 2. Canonical representation of a rate (b + 1)/b encoder (b = 2, m = 3).

Consider the canonical representation of a rate (b + 1)/b encoder [20] as shown in Fig. 2 when the
k k .. kswitch is in position A. Let S k (D) be the state of the encoder at time k with coefficients So, S1, •, Sin-l,

where the output of the encoder at time k is

b

k-1

X -=- Sm_ 1 + _--i uki hi,m

i=1

(I)

]'he state transition for input u_,..., Ubk at time k is given by

ES ]Sk(D) = u_h.{(D) + DSk-I(D) ,nod ho(D)

From the all-zero state, we can enter tile zero-input loop with nonzero input symbols ut,
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b

SI(D) = E uihi(D) mod ho(D)
i=1

(3)

From the same nonzero input symbol, we leave exactly at state S2"-I(D) back to the all-zero state,
where S 2'"- 1(D) satisfies

SI(D) = DS2'"-I(D) mod ho(D) (4)

i.e., $2'"-1(D) is the "predecessor" to state SI(D) in the zero-input loop. If the most significant bit of
2"- 1

the predecessor state is zero, i.e., Sin_ 1 = 0, then the branch output for the transition from $2"-1(D)

to SI(D) is zero for a zero-input symbol. Now consider any weight-1 input symbol, i.e., uj = 1 for j = i

and uj = 0 for j _ i, j = 1, 2,..., b. The question is: What are the conditions on the coefficients hi(D)

such that, if we enter with a weight-1 input symbol into the zero-input loop at state SI(D), the most
significant bit of the "predecessor" state S2"-I(D) is zero. Using Eqs. (3) and (4), we can establish that

h_o + hi,m = 0 (5)

Obviously, when we enter the zero-input loop from the all-zero state and when we leave this loop to go

back to the all-zero state, we would like the parity output to be equal to 1. From Eqs. (1) and (5), we
require

hi0 = 1 ]

fhi,m = 1

(6)

With this condition, we can enter the zero-input loop with a weight-1 symbol at state SI(D) and then
leave this loop from state $2""-1(D) back to the all-zero state, for the same weight-1 input. The parity

weight of the codeword corresponding to weight-2 data sequences is then 2m-1 + 2, where the first term

is the weight of the zero-input loop and the second term is due to the parity bit appearing when entering

and leaving the loop. If b = 1, the proof is complete, and the condition to achieve the upper bound is

given by Eq. (6). For b = 2, we may enter the zero-input loop with u = 10 at state S I(D) and leave the
' .... 1-......... ;_, - m _ s .... _f,_ cJ(r)_ If w_ can choose SJ(D "}such that the outputl'JO l) to bllU ze].-o 5babt:::: vvlv1_ u : v_ _u v...v ...... k--] .......... , ,

weight of the zero-inputloop from SI(D) to SJ(D) isexactly 2m-i/2, then the output weight of the

zero-input loop from SJ+I(D) to $2"-1(D) is exactly 2m-1/2, and the minimum weight of codewords

corresponding to some weight-2 data sequences is

2 m- /

--+2
2

In general, for any b, if we extend the procedure for b = 2, the minimum weight of the codewords

corresponding to weight-2 data sequences is

2m--I

L_-U- j + 2 (7)

where Lxj is the largest integer less than or equal to z. Clearly, this is the best achievable weight for the

minimum-weight codeword corresponding to weight-2 data sequences. This upper bound can be achieved
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if the maximum run length of l's (m) in the zero-input loop does not exceed L2m- 1/bj. If m > L2m- 1 �b J,

then the minimum weight of the codewords corresponding to weight-2 data sequences will be strictly less

than [2m-1/bJ + 2.

The run property of ML LFSRs [14] can help us in designing codes achieving this upper bound.

Consider only runs of l's with length l for 0 < I < m - 1; then there are 2m-2-1 runs of length l, no runs

of length m - 1, and only one run of length m. C!

Corollary 1. For any r = bin recursive systematic convolutional code with b inputs, b systematic

outputs, and n - b parity output bits using a primitive feedback generator, we have

_ b)2m-1
_<k b J+ - b) (8)

Proof. The total output weight of a zero-input loop due to parity bits is (n - b)2 M-1. In this zero-

input loop, tile largest minimum weight (due to parity bits) for entering and leaving the loop with any

weight-1 input symbol is [(n - b)2M-1]/b. The output weight due to parity bits for entering and leaving

the zero-input loop (both into and from the all-zero state) is 2(n - b). _1

There is an advantage to using b > 1, since the bound in Eq. (8) for rate b/bn codes is larger than the

bound for rate 1In codes. Examples of codes are found that meet the upper bound for b/bn codes.

A. Best Rate b/b + 1 Constituent Codes

We obtained the best rate 2/3 codes as shown in Table 1, where d2 = dp + 2. The minimum-weight

eodewords corresponding to weight-3 data sequences are denoted by d3, dm,_ is the minimum distance

of the code, and k = m + 1 in all the tables. By "best" we mean only codes with a large d2 for a given
m that result in a maximum effective free distance. We obtained the best rate 3/4 codes as shown in

Table 2 and the best rate 4/5 codes as shown in Table 3.

Table 1. Best rate 2/3 constituent codes.

k Code generator d2 d3 d,,Li,

3 ho = 7 hi = 3 h2 = 5 4 3 3

4 h0 = 13 hi = 15 h2 = 17 5 4 4

5 ho = 23 hi = 35 h2 = 27 8 5 5

h0 = 23 hi = 35 h2 = 33 8 5 5

6 h0 =45 hi =43 h2 =61 12 6 6

Table 2. Best rate 3/4 constituent codes.

Code generator d2 d3 drain

3 ho = 7 hi = 5 h2 = 3 h3 = 1 3 3 3

ho = 7 hi = 5 h2 = 3 h3 = 4 3 3 3

ho = 7 hi = 5 h2 = 3 h3 = 2 3 3 3

4 ho = 13 ht = 15 h2 = 17 h3 = 11 4 4 4

5 h0 = 23 h l = 35 h,) = 33 ha = 25 5 4 4

ho = 23 h.l = 35 h2 = 27 h3 = 31 5 4 4

ho = 23 h,1 = 35 h2 = 37 h3 = 21 5 4 4

ho = 23 hi = 27 h2 = 37 h3 = 21 5 4 4
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Table 3. Best rate 415 constituent codes.

k Code generator d2 d3 dm_n

4 ho = 13 hi = 15 h2 = 17 h3 = 11 h4 = 7 4 3 3

h0 = 13 hi = 15 h2 = 17 h3 = 11 h4 = 5 4 3 3

5 ho = 23 hi = 35 h2 = 33 h3 = 37 h4 = 31 5 4 4

ho = 23 hl = 35 h2 = 27 h3 = 37 h4 = 31 5 4 4

ho = 23 h] = 35 h2 = 21 h3 = 37 ha = 31 5 4 4

x0

"-=-1-_ D t-

_Y11

(+)----

g21

)---(
g22

go3

'g13

, g23

_ x2

Fig. 3. Rate 1In code.

B. Trellis Termination for b/n Codes

Trellis termination is performed (for b = 2, as an example) by setting the switch shown in Fig. 2

in position B. The tap coefficients aio,".,a_,m-1 for i = 1,2,.-. ,b can be obtained by repeated use of

Eq. (2) and by solving the resulting equations. The trellis can be terminated in state zero with at least

m/b and at most m clock cycles. When Fig. 3 is extended to multiple input bits (b parallel feedback shift

registers), a switch should be used for each input bit.

C. Best Punctured Rate 1/2 Constituent Codes

A rate 2/3 constituent code can be derived by puncturing the parity bit of a rate 1/2 recursive

.................... ,..,:_.._1 _A_ - _'- example, _ pnft'ori'l P [10] A Duncturin_ pattern P has zerosb ybbl=_lllctbl% bUIIVUIUblUIIal bUUb US].ng, xv ........... = • •

where parity bits are removed.

Consider a rate 1/2 recursive systematic convolutional code (1,gl(D)/(go(D)). For an input u(D),

the parity output can be obtained as

u(D)gl(O) (9)
x(D) -- go(D)

_Ve would like to puncture the output x(D) using, for example, the puncturing pattern P[10] (decimation

by 2) and obtain the generator polynomials ho(D), hi(D), and h2(D) for the equivalent rate 2/3 code:

[_o hi(D)

o ho(D)

c = h_(D)

1 ho(D)
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We note that any polynomial f(D) = _ aiD i, aic GF(2), can be written as

f(D) = f1(0 2) + Of 2(D 2) (10)

where fl(D 2) corresponds to the even power terms of f(D), and Df2(D 2) corresponds to the odd power

terms of f(D). Now, if we use this approach and apply it to the u(D), gl(D), and go(D), then we can

rewrite Eq. (9) as

Xl (D 2) J- Dx2 (D 2) :
(?/'1 (02) J- Du2(D2)) (gll (0 2) J- Dg,2(D2))

9ol (D 2) + D9o2 (D 2)
(11)

where xl(D) and x2(D ) correspond to the punctured output x(D) using puncturing patterns P[10] and

P[01], respectively. If we multiply both sides of Eq. (11) by (g01(D 2) + Dg02(D2)) and equate the even
and the odd power terms, we obtain two equations in two unknowns, namely xl(D) and x2(D). For

example, solving for xl (D), we obtain

,,_,,hi(D) , _, h2(D)

Xl(D) = U,[L,) h--_ + u2[L,) h--_
(12)

where ho(D) = go(D) and

hi(D)

h2(D)

= gll(D)gm(D) + Dg12(D)go2(D) ]

IDg12(D)gm(D) + Dgla(D)go2(D)

(13)

From the second equation in Eq. (13), it is clear that h2,0 = 0. A similar method can be used to show

that for P[01] we get hl,m = 0. These imply that. the condition of Eq. (6) will be violated. Thus, we have

the following theorem.

Theorem 2. If the parity puncturing pattern is P = [10] or P = [01], then it is impossible to achieve

the upper bound on d2 = dp + 2 for rate 2/3 codes derived by puncturing rate 1/2 codes.

The best rate 1/2 constituent codes with puncturing pattern P = [10] that achieve the largest d2 are
given in Table 4.

Table 4. Best rate 112 punctured

constituent codes.

k Code generator d2 d3 drnin

9o =7 9l =5 4 3 3

9o = 13 gl = 15 5 4 4

go = 23 gl = 37 7 4 4

go = 23 9, = 3l 7 4 4

9o = 23 91 = 33 6 5 5

9o : 23 91:35 6 4 4

go = 23 gl = 27 6 4 4
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D. Best Rate 1In Constituent Codes

For rate 1/n codes, the upper bound in Eq. (7) for b = 1 reduces to

d_ 5 (n - 1)(2 m-1 + 2)

This upper bound was originally derived in [5], where the best rate 1/2 constituent codes meeting the

bound were obtained. Here we present a simple proof based on our previous general result on rate b/n

codes. Then we obtain the best rate 1/3 and 1/4 codes.

Theorem 3. For rate 1/n recursive systematic convolutional codes with primitive feedback, we have

d_ _ (n - 1)(2 m-1 + 2)

Proof. Consider a rate 1/n code, shown in Fig. 3. In this figure, go(D) is assumed to be a primitive

polynomial. As discussed above, the output weight of the zero-input loop for parity bits is 2 m-1 inde-

pendent of the choice of g_(D), i = 1, 2,..-, n - 1, provided that g_(D) ¢ 0 and that gi(D) ¢ go(D), by

the shift-and-add and balance properties of ML LFSRs. If S(D) represents the state polynomial, then

we can enter the zero-input loop only at state SI(D) = 1 and leave the loop to the all-zero state at state

$2""-1(D) = D m-1. The ith parity output on the transition S2'"-I(D) --, Sl(D) with a zero input bit is

xi = gio + gi,m

If gio = 1 and gi,m = 1 for i = 1, • • •, n - 1, the output weight of the encoder for that transition is zero.

The output weight due to the parity bits when entering and leaving the zero-input loop is (n - 1) for

each case. In addition, the output weight of the zero-input loop will be (n - 1)2 m-1 for (n - 1) parity

bits. Thus, we established the upper bound on d_ for rate 1/n codes. O

We obtained the best rate 1/3 and 1/4 codes without parity repetition, as shown in Tables 5 and 6,

where d2 = d p + 2 represents the minimum output weight given by weight-2 data sequences. The best

rate 1/2 constituent codes are given by go and gl in Table 5, as was also reported in [5].

Table 5. Best rate 1/3 constituent codes.

k Code generator d2 d3 drain

2 go =3 gl = 2 g2 = 1 4 oc 4

3 go = 7 gl ":" 5 92 - 3 8 7 7

4 g0 = 13 gl = 17 g2 = 15 14 10 10

5 go = 23 gl = 33 g2 = 37 22 12 10

go = 23 gl = 25 g2 = 37 22 11 11
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Table6.Bestrate1/4constituentcodes.

k Code generator d2 d3 drain

go = 13 gl = 17 g2 = 15 g3 = 11 20 12 12

go = 23 gl = 35 g2 = 27 g3 = 37 32 16 14

go = 23 g] =33 g2 =27 g3 =37 32 16 14

go = 23 gl =35 g2 =33 g3 =37 32 16 14

go = 23 gl = 33 g2 = 37 ga = 25 32 15 15

E. Recursive Systematic Convolutional Codes With a Nonprimitive Feedback Polynomial

So far, we assumed that tile feedback polynomial for recursive systematic convolutional code is a

primitive polynomial. We could ask whether it is possible to exceed the upper bound given in Theorem 1

and Corollary 1 by using a nonprimitive polynomial. The answer is negative, thanks to a new theorem

by Solomon W. Golomb (Appendix).

Theorem 4.1 For any rate 1/n linear recursive systematic convolutional code generated by a non-

primitive feedback polynomial, the upper bound in Theoreln 3 cannot be achieved, i.e.,

d_ < (,,_- 1)(2 m _+ 2)

Proof. Using the results of Golomb (see the Appendix) for a nonprimitive feedback polynomial, there

are more than two cycles (zero-input loops) in LFSR. The "zero cycle" has weight zero, and the weights

of other cycles are nonzero. Thus, the weight of each cycle due to the results of the Appendix is strictly

less than ('n - 1)2 m-1. If we enter from the all-zero state with input weight-1 to one of the cycles of the

shift register, then we have to leave the same cycle to the all-zero state with input weight-l, as discussed

in Theorem 1. Thus, d_ < (n - 1)(2 .... 1 + 2). _3

Theorem 5. For any rate b/b + 1 linear recursive systematic convolutional code generated by a

nonprimitive feedback polynomial, the upper bound in Theorem 1 cannot be exceeded, i.e.,

Proof. Again using the results of the Appendix, there is a "zero cycle" with weight zero and at least

two cycles with nonzero weights, say q cycles with weights wl, w2,'", wq. The sum of the weights of all

cycles is exactly 2 "_-1, i.e., _ 'wi = 2 m-1. For a b/b + 1 code, we have b weight-1 symbols. Suppose that

with b_ of these weight-1 symbols we enter from the all-zero state to the ith cycle with weight w i; then we

have to leave tim same cycle to the all-zero state with the same b, symbols for i = 1, 2, • • •, q, such that

bi = b. Based on the discussion in the proof of Theorem 1, the largest achievable nfininmm output

weight of codewords corresponding to weight-2 sequences is min(uq/b_, w.2/b,2,.", 'wq/bq) q- 2. But it is

ea.sy to show that nliIl('wl �hi, 'w2/t)2,..., 'w,Jbq) <_ (_-_. 'wi/Y_. bi) = 2 m-- 1/b.

_'l'he proofs of Theorems 4 and 5 are based on a res,lt by S. W. Golomb (see the Appendix), U,fiversity of Southern
Califl_rma, Los Angeles, California, 1995. Theorem 4 and Corollary 2 were proved for more general ca.ses when the

code is generaled by nmltiple LFSRs by R.. J. MeFliece, Communications Systems and Research Section, ,let Propulsion

Laboratory, Pasadena, California, and California Institute of Technology, Pasadena, California, 1995, using a state-space

approach.
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Corollary 2. For any rate bin linear recursive systematic convolutional code generated by a non-

primitive feedback polynomial, the upper bound in Corollary 1 cannot be exceeded.

Proof. The proof is similar to the Proof of Theorem 5, but now _ wi = (n - b)2 m-1.

Lok = 2pyok

Llk = log

L2k = log

L3k = log

}-_u:_k =1 P(Yl lu) 1-Ij#k e_j (L,,_+L_ +L_:,)

_u:uk=0 P(Yl lu) [Ij#k c_j(L"j+L:j+L'_")

Eu:uk=l P(y2lu) [Ij#k euJ(L')J-_-LlJ-[-L3J)

_-_:_:=0 P(Y2I u) [Ij#k e_J(L"_+L'_+L_)

Eu:u/, =1 P(Y31 u) l-[j#k eu_(L_"J+L'"J+L2_)

_-_u:_k =0 P(Y3 lu)[Ij#k e_:' (L,,j _VLlj-._L2j)

for k = 1, 2,.-., N. In Eq. (14), Lik represents extrinsic information and Yi, i = 0, 1, 2, 3 are the received

observation vectors corresponding to x_, i = 0, 1, 2, 3 (see Fig. 1), where p = _/No, if we assume

the channel noise samples have unit variance per dimension. The final decision is then based on

Lk = gok + glk -_- L2k -_- L3k

which is passed through a hard limiter with a zero threshold.

The above set of nonlinear equations is derived from the optimum bit decision rule, i.e.,

E,:_,=I P(yoIu)P(Yxlu)P(y21u)P(Y31 u)

Lk = log v" P(y_ ,,)P(y, u)P(votu_P(v_ u)
/---¢U:U/,,=O * _ _ - * x_ -, * , ....

using the following approximation:

N eutLi_:

P(ulYi) _ H 1 + e Lk
k=l

(17)

Note that, in general, P(uly_ ) is not separable. The smaller the Kullback cross entropy [3,17] between

right and left distributions in Eq. (17), the better is the approximation and, consequently, the closer is

turbo decoding to the optimum bit decision.
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IV. Turbo Decoding for Multiple Codes

In [9] we described a new turbo decoding scheme for q codes based on approximating the optimum

bit decision rule. The scheme is based on solving a set of nonlinear equations given by (q = 3 is used to

illustrate the concept)



Weattemptedto solvethenonlinearequationsin Eq.(14)for L1, !_2, and L3 by using the iterative

procedure

L (re+l) = a_)log Eu:uk=l P(Yll u) I]y#k e'_J(L"J+L_I_+L_7')lk (18)- -(-0 -(m)

_-_u:u_:=oP(yllu)[Ijekeuj(L"j+L2J +LaJ )

for k = 1, 2,..- N, iterating on m. Similar recursions hold for ?(m) and _.(m) The gain c_ m) should_2k _3k "

be equal to one, but we noticed experimentally that better convergence can be obtained by optimizing

this gain for each iteration, starting from a value less than 1 and increasing toward 1 with the iterations,

as is often done in simulated annealing methods. We start the recursion with the initial condition 2

_0) = 1_0) = _,_0) = !_0. For the computation of Eq. (18), we use a modified MAP algorithm 3 with

permuters (direct and inverse) where needed, as shown in Fig. 4. The MAP algorithm [1] always starts

and ends at the all-zero state since we always terminate the trellis as described in [8]. We assumed 7rl = I

(identity); however, any rq can be used. The overall decoder is composed of block decoders connected

as in Fig. 4, which can be implemented as a pipeline or by feedback. In [10] and [11], we proposed an
alternative version of the above decoder that is more appropriate for use in turbo trellis-coded modulation,

i.e., set L0 = 0 and consider Y0 as part of Yr. If the systematic bits are distributed among encoders, we

use the same distribution for Y0 among the MAP decoders.

_-0

/..3(m)

L2(m)

_ 11;1 _ _ OR . _'_ 7_1-1l_ _ + 1)

__ SOVA1 , , ..k--

t..1 (m)

[-3(m)

L2(m)

L 1(m)

/..3(m + 1 )

__[__ DECODED BITS

Fig. 4. Multiple turbo decoder structure.

2 Note that tile components of the [,i's corresponding to the tail bits, i.e., Lik for k = N + 1,..., N + Mi, are set to zero

for all iterations.

3 Tile modified MAP algorithm is described in S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Soft-Output

Decoding Algorithms in Iterative Decoding of Parallel Concatenated Convolutional Codes," submitted to ICC '96.
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At this point, further approximation for turbo decoding is possible if one term corresponding to a

sequence u dominates other terms in the summation in the numerator and denominator of Eq. (18).

Then the summations in Eq. (18) can be replaced by "maximum" operations with the same indices, i.e.,

replacing _u:_,._:=i with ulnaxi for i = 0, 1. A similar approximation can be used for L2k and L3k in

Eq. (14). This suboptimum decoder then corresponds to a turbo decoder that uses soft output Viterbi

(SOVA)-type decoders rather than MAP decoders. Further approximations, i.e., replacing _ with max,
can also be used in the MAP algorithm. 4

A. Decoding Multiple Input Convolutional Codes

If the rate b/n constituent code is not equivalent to a punctured rate 1/n' code or if turbo trellis-coded

modulation is used, we can first use the symbol MAP algorithm 5 to compute the log-likelihood ratio of
a symbol u = ul, u2, ..., Ub given the observation y as

A(u) = log P(uIY----_)
P(0ly)

where 0 corresponds to the all-zero symbol. Then we obtain the log-likelihood ratios of the jth bit within
the symbol by

L(uj) = log _-_u:_,=l cA(u)
_--_u:u_ =0 cA(u)

In this way, the turbo decoder operates on bits, and bit, rather than symbol, interleaving is used.

V. Performance and Simulation Results

The BER performance of these codes was evaluated by using transfer function bounds [4,6,12]. In [12],
it was shown that transfer function bounds are very useful for SNRs above the cutoff rate threshold and

that they cannot accurately predict performance in the region between cutoff rate and capacity. In this
region, the performance was computed by simulation.

Figure 5 shows the performance of turbo codes with m iterations and an interleaver size of N = 16,384.

r'Pl_ _C_ll .... ;_ c_o are used examples:A-£1% LVJ.IU ¥¥ 1£11_ uu_o as

(1) Rate 1/2 Turbo Codes.

Code A: Two 16-state, rate 2/3 constituent codes are used to construct a rate 1/2 turbo

code as shown in Fig. 6. The (worst-case) minimum codeword weights, di, corresponding

to a weight-/ input sequence for this code are d_f=14, d3=7, d4=8, d5=5=dmi_, and
d6=6.

4 Ibid.

5 Ibid.
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Code B: A rate 1/2 turbo code also was constructed by using a differential encoder and a

32-state, rate 1/2 code, as shown in Fig. 7. This is an example where the systematic bits

for both encoders are not transmitted. The (worst-case) minimum codeword weights, di,

corresponding to a weight-/input sequence for this code are d_f=19, d4=6=d,_i_, d6=9,

ds=8, and d10=11. The output weights for odd i are large.

(2) Rate 1/3 Turbo Code.

Code C: Two 16-state, rate 1/2 constituent codes are used to construct a rate 1/3 turbo

code as shown in Fig. 8. The (worst-case) minimum codeword weights, di, corresponding

to a weight-/ input sequence for this code are def=22, d3 = 11, d4=12, d5 = 9 = dmi_,

d6=14, and d7=15.

(3) Rate 1/4 Turbo Code.

Code D: Two 16-state, rate 1/2 and rate 1/3 constituent codes are used to construct

a rate 1/4 turbo code, as shown in Fig. 9, with d_f = 32, d3 = 15 = d_i_, d4 = 16,

d5 = 17, d6 = 16, and d7 = 19.

(4) Rate 1/15 Turbo Code.

Code E: Two 16-state, rate 1/8 constituent codes are used to construct a rate 1/15

turbo code, (1, g l �go, g2/go, g3 �go, g4 �go, g5 �go, g6 �go, g7 �go) and (gl/go, g2 �go, .q3�go, g4 /

9o, 95/90, g6/go, 97/9o), with 90 = (23)octal, gl = (21)octal, g2 = (25)octal, g3 = (27)octaZ,

g4 = (31)oaaZ, g5 = (33)octal, g6 = (35)o_tal, and g7 = (37)octal. The (worst-case)
minimum codeword weights, di, corresponding to a weight i input sequence for this (:ode

are d_/=142, d3=39=d_,_, d4=48, d5=45, d6=50, and d7=63.

The simulation performance of other codes reported in this article is still in progress.
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Fig. 5. Performance of turbo codes.
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A

Fig. 6. Rate 1/2 turbo code constructed from two codes (h 0 = 23, h I = 35, h2 = 33).

DIFFERENTIAL ENCODER
INPUT DATA

l? U
16,384-bit

INTERLEAVER

r v_k,.,. J

Fig. 7. Rate 1/2 turbo code constructed from a differential encoder and code
(go = 67, gl = 73).

ll-

VI. Turbo Trellis-Coded Modulation

A pragmatic approach for turbo codes with multilevel modulation was proposed in [16]. Here we

propose a different approach that outperforms the results in [16] when M-ary quadrature amplitude

modulation (_,I-QAM) or M-ary phase shift keying (MPSK) modulation is used. A straightforward

method for the use of turbo codes for multilevel modulation is first to select a rate b/(b + 1) constituent

code, where the outputs are mapped to a 25+l-level modulation based on Ungerboeck's set partitioning

method [21] (i.e., we can use Ungerboeck's codes with feedback). If MPSK modulation is used, for every b

bits at the input of the turbo encoder, we transmit two consecutive 25+1 phase-shift keying (PSK) signals,

one per each encoder output. This results in a throughput of b/2 bits/s/Hz. If M-QAM modulation is
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INPUT DATA

16,384-bit

NTERLEAVER

Fig. 8. Rate 113 turbo code constructed from two identical codes
(go = 23, gl = 33).

INPUT DATA
IB

16,384-bit
INTERLEAVER

Fig. 9. Rate 114turbo code constructed from two codes
(go = 23, gl = 33) and (go = 23, gl = 37, g2 = 25).

used, we map the b + 1 outputs of the first component code to the 2 b+l in-phase levels (I-channel) of a

22b+2-QAM signal set and the b + 1 outputs of the second component code to the 2 b+l quadrature levels

(Q-channel). The throughput of this system is b bits/s/Hz.

First, we note that these methods require more levels of modulation than conventional trellis-coded

modulation (TCM), which is not desirable in practice. Second, the input information sequences are used

twice in the output modulation symbols, which also is not desirable. An obvious remedy is to puncture

the output symbols of each trellis code and select the puncturing pattern such that the output symbols

of the turbo code contain the input information only once. If the output symbols of the first encoder are

114



punctured, for example as 101010..-, the puncturing pattern of the second encoder must be nonuniform

to guarantee that all information symbols are used, and it depends on the particular choice of interleaver.
Now, for example, for 25+1 PSK, a throughput b can be achieved. This method has two drawbacks: It

complicates the encoder and decoder, and the reliability of punctured symbols may not be fully estimated

at the decoder. A better remedy, for rate b/(b + 1) (b even) codes, is discussed in the next section.

A. A New Method to Construct Turbo TCM

For a q = 2 turbo code with rate b/(b + 1) constituent encoders, select the b/2 systematic outputs and

puncture the rest of the systematic outputs, but keep the parity bit of the b/(b + 1) code (note that the

rate b/(b + 1) code may have been obtained already by puncturing a rate 1/2 code). Then do the same

to the second constituent code, but select only those systematic bits that were punctured in the first

encoder. This method requires at least two interleavers: The first interleaver permutes the bits selected

by the first encoder and the second interleaver those punctured by_the first encoder. For MPSK (or
M-QAM), we can use 21+b/2 PSK symbols (or 21+5/2 QAM symbols) per encoder and achieve throughput

b/2. For M-QAM, we can also use 21+5/2 levels in the I-channel and 21+5/2 levels in the Q-channel and

achieve a throughput of b bits/s/Hz. These methods are equivalent to a multidimensional trellis-coded

modulation scheme (in this case, two multilevel symbols per branch) that uses 25/2 × 21+5/2 symbols per

branch, where the first symbol in the branch (which depends only on uncoded information) is punctured.
Now, with these methods, the reliability of the punctured symbols can be fully estimated at the decoder.

Obviously, the constituent codes for a given modulation should be redesigned based on the Euclidean

distance. In this article, we give an example for b = 2 with 16-QAM modulation where, for simplicity,

we can use the 2/3 codes in Table 1 with Gray code mapping. Note that this may result in suboptimum

constituent codes for multilevel modulation. The turbo encoder with 16 QAM and two clock-cycle trellis

termination is shown in Fig. 10. The BER performance of this code with the turbo decoding structure
for two codes discussed in Section IV is given in Fig. 11. For permutations _h and _r2, we used S-random

permutations [9] with S = 40 and S = 32, with a block size of 16,384 bits. For 8 PSK, we used two

16-state, rate 4/5 codes given in Section V to achieve throughput 2. The parallel concatenated trellis

codes with 8 PSK and two clock-cycle trellis termination is shown in Fig. 12. The BER performance of

this code is given in Fig. 13. For 64 QAM, we used two 16-state, rate 4/5 codes given in Section V to

achieve throughput 4. The parallel concatenated trellis codes with 64 QAM and two clock-cycle trellis
termination is shown in Fig. 14. The BER performance of this code is given in Fig. 15. For permutations

nl, 7r2, 7r3, and 7r4 in Figs. 10, 12, and 14, we used random permutations, each with a block size of 4096

bits. As was discussed above, there is no need to use four permutations; two permutations suffice, and

they may even result in a better performance. Extension of the described method for construction of

turbo TCM based on Euclidean distance is straightforward. 6

VII. Conclusions

In this article, we have shown that powerful turbo codes can be obtained if multiple constituent codes

are used. We reviewed an iterative decoding method for multiple turbo codes by approximating the

optimum bit decision rule. We obtained an upper bound on the effective free Euclidean distance of b/n

codes. We found the best rate 2/3, 3/4, 4/5, and 1/3 constituent codes that can be used in the design
of multiple turbo codes. We proposed new schemes that can be used for power- and bandwidth-efficient
turbo trellis-coded modulation.

6This is discussed in S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Parallel Concatenated Trellis Coded Modu-
lation," submitted to ICC '96.
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Fig. 10. Turbo trellis-coded modulation, 16 QAM, 2 bits/s/Hz.
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Fig. 12. Parallel concatenated trellis-coded modulation, 8 PSK, 2 bits/s/Hz.
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Appendix

A Bound on the Weights of Shift Register Cycles I

I. Introduction

A maximum-length linear shift register sequence--a pseudonoise (PN)-sequence or a maximal length

(m)-sequence--of degree m has period p = 2m - 1, with 2m-1 ones and 2m-1 - 1 zeroes in each period.

Thus, the weight of a PN cycle is 2m-1. From a linear shift register whose characteristic polynomial is

reducible, or irreducible but not primitive, in addition to the "zero-cycle" of period 1, there are several

other possible cycles, depending on the initial state of the register, and each of these cycles has a period
less than 2m - 1.

The question is whether it is possible for any cycle, from any linear shift register of degree m, to have

a weight greater than 2m-1. We shall show that the answer is "no" and that this result does not depend

on the shift register being linear.

II. The Main Result

Let S be any feedback shift register of length m, linear or not. We need not even specify that the

shift register produce "pure" cycles, without branches. We will use only the fact that each state of the

shift register has a unique successor state. For any given initial state, we define the length L of the string

starting from that state to be the number of states, counting from the initial state, prior to the second

appearance of any state in the string. (In the case of branchless cycles, this is the length of the cycle with

the given initial state.)

The string itself is this succession of states of length L. The corresponding string sequence is the
sequence of O's and l's appearing in the right-most position of the register (or any other specific position

of the register that has been agreed upon) as the string goes through its succession of L states.

Theorem 1. From a feedback shift register S of length m, the maxinmm number of l's that can
appear in any string sequence is 2m- 1.

Proof. There are 2m possible states of the shift register S altogether. In any fixed position of the shift
register, 2 "_- 1 of these states have a 0 and 2m- 1 states have a 1. In a string of length L, all L of the states

are distinct, and in any given position of the register, !_either 0 nor 1 can occur more than 2m-1 times.

In particular, the weight of a string sequence from a register of length m cannot exceed 2 m-1.

Corollary 1. No cycle from a feedback shift register of length m can have weight exceeding 2 ra-1.

1s. w. Oolomb, personal communication, University of Southern California, Los Angeles, California, 1995.
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It has long been known that convolutional codes have a natural, regular trellis

structure that facilitates the implementation of Viterbi's algorithm [30,10]. It has

gradually become apparent that linear block codes also/]ave a natural, though not

in general a regular, "minimal" trellis structure, which allows them to be decoded

with a Viterbi-1ike algorithn] [2,31,22,11,27,14,12,16,24,25,8,15]. In both cases, the

complexity of tile Viterbi decoding algorithm can be accurately estimated by the

number of trellis edges per encoded bit. It would, therefore, appear that we are

in a good position to make a fair comparison of the Viterbi decoding complex-

ity of block and convolutional codes. Unfortunately, however, this comparison is

somewhat muddled by the fact that some convolutional codes, tile punctured con-

volutional codes [4], are known to have trellis representations that are sig_Jificantly

less complex than the conventional trellis. In other words, ttle conventional trel]is

representation for a convolutional code may not be the minimal trellis representa-

tion. Thus, ironically, at present we seem to know more about the minimal trel]is

representation for block than for convolutional codes. In this article, we provide a

remedy, by developing a theory of minimal trellises for convolutional codes. (A sim-

ilar theory has recently been given by Sidorenko and Zyabloy [29].) This allows us

to make a direct performal_ce-complexity comparison for block and convolutional

codes. A by-product of our work is an algorithm for choosing, from among a11

generator matrices for a given convolutional code, what we call a trellis-minimal

generator matrix, from which the minimal trellis for the code can be directly con-

structed. Another by-product is that, in the new theory, punctured convolutional

codes no longer appear as a special class, but simply as high-rate convolutional

codes whose trellis complexity is unexpectedly small.

I. Introduction

Wc begill with the standard definition of a convolutional code [9,26], always assuming that the under-

lying feld is F = GF(2). An (n, k) convolutional code C is a k-dimensional subspace of F(D) '_, where

F(D) is the field of rational functions in the indeterminate D over the field F. The memory, or degree,

1Graduate student at the California Institute of Technology, Pasadena, California.
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of C, is the smallest integer m such that C has an encoder requiring only m delay units. An (n, k) convo-
lutional code with memory m is said to be a (n, k, m) convolutional code. The free distance of C is the

minimum Hamming weight of any codeword in C. An (n, k, m) convolutional code with free distance d is
said to be an (n, k, m, d) code.

A minimal generator matrix G(D) for an (n, k, m) convolutional code C is a k x n matrix with polyno-

nfial entries, whose row space is C, such that the direct-form realization of an encoder for C based on G(D)
uses exactly m delay elements [9,26]. From a minimal generator matrix G(D), or rather from a physical

encoder built using G(D) as a blueprint, it is possible to construct a conventional trellis representation

for C. This trellis is, in principle, infinite, but it has a very regular structure, consisting (after a short

initial transient) of repeated copies of what we shall call the "trellis module" associated with G(D). The
trellis module consists of 2m initial states and 2m final states, with each initial state being connected by

a directed edge to exactly 2k final states. Thus, the trellis module has 2k+m edges. Each edge is labeled

with an n-bit binary vector, namely, the output produced by the encoder in response to the given state

transition. Thus, each edge has length (measured in edge labels) n, and so the total edge length of the

conventional trellis module is n2 k+m. Since each trellis module represents the encoder's response to k

input bits, we are led to define the conventional trellis complexity of the trellis module as

rt . 2m+k edge labels per encoded bit (1)
k

or edges per bit, for short. If the code C is decoded using Viterbi's maximum-likelihood algorithm on the
trellis [30,10], the work factor involved in updating the metrics and survivors at each trellis module is

proportional to the edge length of the trellis module, so that the trellis complexity as defined in Eq. (1)

is a measure of the effort per decoded bit required by Viterbi's algorithm. (For a more detailed discussion

of the complexity of Viterbi's algorithm on a trellis, see [25, Section 2].)

For example, consider the (3, 2, 2) convolutional code with minimal generator matrix given by

G I ( D ) = ( I + DD I+D0 I+D1 ) (2)

This code has the largest possible free distance, viz., dfL-ee = 3, for any (3, 2, 2) code. A "direct-form"

encoder based on the generator matrix GI(D) is shown in Fig. 1. If the input pair is (Ul,U2) and the

state of the encoder is (s, t), then the output (Xl, x2, x3) is given by

X 1 ---- U 1 -]-Snt-t

X 2 _ U 1 -t- S

x3 = ul + u2 + t

(3)

and the "next state" is just the input pair (ul,u2). The conventional trellis module for the code with

minimal generator matrix GI(D) given in Eq. (2) is shown in Fig. 2. The three-bit edge label on the

edge from (s, t) to (u_, u2) is the triple (Xl, x2, x3) given in Eq. (3). The total edge length is 48, so that

the conventional trellis complexity corresponding to the matrix GI(D) is 48/2 = 24 edges per bit, as
predicted by Eq. (1).

But we can do substantially better than this, if we use the fact that this particular code is a punctured

convolutional code. We now briefly review the theory of punctured convolutional codes to see how
simplified trellises result.
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Ul ,,, qj, •

U •

r-c-I

x 1 x 2 x 3

Fig. 1. A direct-form encoder based on the generator
matrix GI(D) in Eq. (2). The input is (u 1, u2), the
output is (xI , x2, x3), and the state of the encoder is
(s, t). (The boxes labeled s and t are unit delay
elements.)

O0_ O0

01 _ 01

10_10

11_11

Fig. 2. The conventional trellis module
for the code with minimal generator
matrix GI(D) given in Eq. (2).

If we begin with a parent (N, 1, m) convolutional code, and block it to depth k, i.e., group the input

bit stream into blocks of k bits each, the result is an (Nk, k, m) convolutional code. If we now delete,

or puncture, all but rt bits from each Nk-bit output block, the result is an (Tz, k, m) convolutional code. 2

This punctured code can be represented by a trellis whose trellis module is built from k copies of the

trellis modules from tile parent (N, 1,m) code, each of which has only 2 m+l edges, so that the total

number of edge labels on the trellis module is n • 2 'n+l, which means that the trellis complexity of an

('1_.,t_', m) punctured code is

n . 2m+1 edges per bit (4)
k

which is a factor of 2 k-1 smaller than the complexity of the conventional trellis given in Eq. (1). For

k = l, this is no improvement, but for larger values of k, the decoding complexity reduction afforded

2 In fact, the llrlelnory of the punctured code may be less than m, but for most interesting punctured codes, no memory

reduction will take place.
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by puncturing becomes increasingly significant. And while the class of punctured convolutional codes

is considerably smaller than the class of unrestricted convolutional codes, nevertheless many punctured

convolutional codes with good performance properties are known [4,13,3,7], and punctured convolutional
codes, especially high-rate ones, are often preferred in practice.

For example, consider the (2, 1, 2, 5) convolutional code defined by the minimal generator matrix

G2(D)=(I+D+D 2 I+D 2) (5)

The conventional trellis module for this code is shown in Fig. 3. If we block this code into blocks of

size k = 2, we obtain a (4, 2, 2) convolutional code, still with dfree = 5, for which the conventional trellis

module is two copies of the trellis module shown in Fig. 3; see Fig. 4.

Now we can do the puncturing. Take the (4, 2, 2) code, as represented by the trellis module in Fig. 4,

and delete the second output bit on each of the edges in the second part of the module. The result is shown

in Fig. 5. This structure can be thought of as the trellis module for a (3, 2, 2) code; the corresponding

dfre_ turns out to be 3. According to Eq. (1), the conventional trellis complexity of a (3,2, 2) code is

3/2 - 2 4 = 24 edges per bit. But if we use instead the punctured trellis corresponding to the k = 2

blocked version of the parent (2, 1, 2) code, we find from Eq. (4), or Fig. 5, that the trellis complexity is

instead only 3/2 • 23 = 12 edges per bit. In fact, it can be shown that this punctured (3, 2, 2) code is the

same as the conventional code with generator matrix GI(D) given in Eq. (2). (Indeed, this example is

taken almost verbatim from [4], where it was used to illustrate the way puncturing can reduce decoding

complexity.)

O0 O0

01 01

10 _10
01

11 11

ooct °° oo ., oo

01 1_____ 0110 10

11 11

01_01

10_ 10

Fig. 3. The trellis module for
the (2,i,2) code with genera-

tor matrix G2(D)=(1 + D+D 2

1 +D 2); total edge length is
16, so the trellis complexity is
16 edges per bit.

Fig. 4. The trellis module for the (4,2,2)
code obtained from the code of Fig. 3
by blocking the inputs in blocks of size
2; total edge length is 32, so the trellis
complexity is 32/2 = 16 edges per bit,
the same as for the original code.

Fig. 5. The trellis module for the
(3,2,2) punctured code obtained from
the code of Fig. 4 by deleting every
fourth bit; total edge length is 16 + 8 =
24, so the trellis complexity is 24/2 =
12 edges per bit.

It seems mysterious that an ordinary-looking generator malrix u_.e'" Ul_L')"_n_ pluuuuc_J....... a _uu_.... _,,,o_u_"_

trellis complexity can be significantly reduced (if one knows that it is, in fact, a punctured code), whereas
for an almost identical code, say one defined by the generator matrix

I+D D I+D)D 1 1

no such reduction is apparently possible. In Section II, we will resolve this mystery by developing a

simple algorithm for constructing the mininmm possible trellis for any convolutional code. Our technique

will always find a simplified trellis for a punctured code, with complexity at least as small as that given

by Eq. (4), even if we are not told in advance that the code can be obtained by puncturing. But more

125



important, it will often result in considerable simplification of the trellis representation of a convolutional

code that is not a punctured code. We will illustrate this with worked examples in Sections II and III

and numerical tables in the Appendix.

II. Construction of Minimal Trellises

If G(D) is a minimal generator matrix for an (n, k, m) convolutional code C, then we can write G(D)
in the form

G(D) = Go + G1D +... + GLD L (6)

where Go,..., GL are k x n scalar matrices (i.e., matrices whose entries are from GF(2)), and L is the

maximum degree of any entry of G(D). If we concatenate the L + 1 matrices Go,. •., GL, we obtain a

k x (L + 1)n scalar matrix, which we denote by G:

G : (Go al ... GL) (7)

It is well known [23, Chapter 9] that the matrix G and its shifts can be used to build a scalar generator

matrix Gscalar for the code C (for simplicity of notation, we illustrate the case L = 2):

Gsc_|ar

GO G1 G2

Go G1 G2

Go G1 G2
Go G1 G2

(8)

The matrix in Eq. (8) is, except for the fact that it continues forever, the generator matrix for a binary

block code (with a very regular structure), and so the techniques that have been developed for finding

minimal trellises for block codes are useful for constructing trellis representations for convolutional codes.

Here we apply the techniques developed in [25, Section 7], which show how to construct a trellis directly

from any generator matrix for a given block code, and the minimal trellis if the generator is in minimal

span form, to construct a trellis for C based on the infinite scalar generator matrix Gsc_l_r.

The trellis module for the trellis associated with Gscalar corresponds to the (L+ 1)k x n matrix module,

0 = GL-1 (9)

Co

which repeatedly appears _ a vertical "slice" in Gs¢_lar. Using the techniques in [25, Section 7], it is e.asy

to show that the number of edges ill this trellis module is

n

edge count = E 2"_
j=l

(10)
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where aj is the number of active entries in the jth column of the matrix module G. (An element is called

active if it belongs to the active span of one of the rows of G. We will elaborate on this below.) Our
object, then, is to find a generator matrix for which the edge count in the corresponding trellis module is
as small as possible.

To clarify these ideas, we consider the (3, 2, 1) code with (minimal) generator matrix

(110 * ) Ill,G3(D)= I+D I+D

According to Eq. (1), the conventional trellis complexity for this code is 12 edges per bit. However, we

can do better. The scalar matrix G3 corresponding to Ga(D) is [cf. Eq. (7)]

(101000) (12)G3= 1 1 1 0 1 1

In Eq. (12), we have shown the active elements of each row, i.e., the entries from the first nonzero entry

to the last nonzero entry, in boldface. The span length of (i.e., the number of active entries in) the first
row is, therefore, three; and the span length of the second row is six. The matrix module corresponding
to G3 is [cf. Eq. (9)]

(00 )G-_= 01
10

11

Thus, al = 3, a2 = 3, and a3 = 3, which by Eq. (10) means that the corresponding trellis module

has 23 + 23 + 23 = 24 edges. Since each trellis module represents two encoded bits, the resulting trellis

complexity is 24/2 = 12 edges per bit. Since we have already noted that the conventional trellis complexity

for this code is also 12 edges per bit, the trellis corresponding to Ga(D) is not better than (in fact, it is

isomorphic to) the conventional trellis. To do better, we need to find a generator matrix for the code for

which _i 2a_ is less than 24. Using the results of [25, Section 6], it is possible to show that minimizing

_i 2a_ is equivalent to minimizing _ ai, i.e., the total span length of the corresponding G, and so we

shall look for generator matrices for which the span of G i.q reduced.

Note that if we add the first row of G3(D) to the second row, the resulting generator matrix, which is
still minimal, is

/I 0 1\

The scalar matrix G_ corresponding to G_3(D) is [cf. Eq. (7)]

G_3= (1001001 0 0 1 _) (13)

The span length of the first row of G_3(D) is three, and the span length of the second row is five, and so

the total span length is eight, one less than that of Ga(D). The matrix module corresponding to G_3 is
[cf. Eq. (9)]
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0 0 0 /
(;'-_;=3 0 1 1

1 0 1

0 1 0

Here a 1 = 2, a2 = 3, and a3 = 3, and so by Eq. (10) the corresponding trellis module has 22 +2 3 +2 3 = 20

edges, so that tile resulting trellis complexity is 20/2 = 10 edges per bit. Tile trellis module itself,

constructed using the technique described in [25, Section 7] is shown in Fig. 6.

0 0

_0,._ _0 _ _,_00-'%--_ 0.-
". -"-o. _ "o ./* z/z

"o, ",<. "-o-/ /,

"C. /
_',, I I

_" ._//1

Fig. 6. The trellis module for the (3,2,1) code with generator matrix
G_ (D). (Solid edges represent "0" code bits, and dashed edges

represent "1" code bits. The labels on the vertices correspond to the
information bits.)

But we can do still better. If we multiply the first row of G'a(D ) by D and add it to tile second row,

the resulting generator matrix, which is still minimal, is

(,G'_(D) = D l + O

The scalar matrix G_' corresponding to C'a'(D) is [cf. Eq. (7)]

OWa,= (10 01 O1 01 10 0)0 (14)

The span length of G'a'(D ) is seven, one less than that of Ca(D). The matrix module corresponding to

c._' is [cf.Eq. (9)]

a---;3,= 1 1
1 o
o 1

Here a l = 2, a2 = 3, and aa = 2, and so by Eq. (10), the corresponding trellis module has 22+ 23+ 22 = 16

edges, so that the resulting trellis complexity is 16/2 = 8 edges per bit. The trellis module itself, again

constructed using the techniques described in [25, Section 7] is shown in Fig. 7.
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O. _ ... 0-._ .._0

"_ "" "" -.... 1 "" _" "_"" 1

1 0

.s

Fig. 7. The trellis module for the (3,2,1) code with generator matrix
G _'(D ). This is the minimal trellis module for this code.

Furthermore, it is easy to see that there is no generator matrix for this code with span length less than

seven, so that the trellis module shown in Fig. 7 yields the minimal trellis for the code. Alternatively, we

examine the scalar generator matrix for the code corresponding to G_' [cf. Eq. (8)]:

(_scMar =

-!oiooo
OIOITO

loT

0 1 0

0 0 0

1 T 0

0 1 0 T 0 0 0

0 1 0 1 T 0

(15)

In Eq. (15), we see that Gscalar has the property that no column contains more than one underlined entry,

the leftmost nonzero entry in its row (L), or more than one overlined entry, the rightmost nonzero entry

in its row (R). Thus, Gscala, has the LR property, and so, if it were a finite rnatriz, it would produce

the minimal trellis for the code [25, See. 6]. To circumvent the problem that Gscalar is infinite, we can
define the Mth truncation of the code C, denoted by C[MI, as the ((M + L)n, Mk) block code obtained

by taking only the first Mk rows of Gscalar, i.e., the code with Mk x (M + L)n generator matrix

G [_]
scalar =

-!oiooo
OlOITO

loT

OlO

0 0 0

1 T 0

i 0 T 0

0 1 0 I

0 0

T o

(16)

Plainly, i[ Gsc,_l_,- has the LR property, so does tJscalar ,• " all . ilium, /UI/UW_ _./UIII Ull_,_ _t_C_IIUObIU

re[all produces the minimal trellis for C [M], for all M,theory of trellises for block codes that the matrix _scalar

and so we can safely call the infinite trellis, built from trellis modules corresponding to G, the minimal

trellis for the code. (Note that, in this example, the ratio of the conventional trellis complexity to the

minimal trellis complexity is 12/8 = 3/2. If this code were punctured, then according to Eqs. (1) and
(4), the ratio would be at least 2. Thus, we conclude that the code with generator matrix G3(D) as given

in gq. (11) is not a punctured code, which shows that the theory of minimal trellises for convolutional

codes goes beyond merely .... _"explaining, punctured codes.)

The preceding argument, though it was presented in terms of a specific example, is entirely general. It

shows that a basic generator matrix G(D) produces a minimal trellis if and only if G(D) has the property

that the span length of the corresponding G cannot be reduced by an operation of the form
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gi(D) _ g,(D) + De gj(D)

where gi(D) is the ith row of G(D) and f is an integer in the range 0 < _ < L. We shall call a generator

matrix with this property a trellis-minimal generator matrix for C. A trellis-minimal generator matrix
must be minimal, but the converse need not be true, as the example of this section shows. Furthermore,

it call be shown that the set of trellis-minimal generator matrices for a given code C coincides with the

set of generator matrices for which the span length of the corresponding G is a minimum. In the next

section, we will give two more examples of minimal trellises.

III. Two More Examples

Our first example is for tile code whose generator matrix is given ill Eq. (2).

decomposition [cf. Eq. (6)] is

Tile corresponding

(1 1 1) (1 1 01) DGI(D)= 0 0 1 + 1 0

The scalar matrix G is, thus,

1 1 1 1 1 0)GI= 0 0 1 1 0 1

and tile matrix module 0 from Eq. (9) is then

1 1 0)
01 = 1 0 1 (17)

1 1 1

0 0 1

Since t-here are three active entries in each column of 0, it follows from Eq. (10) that tile edge count for

the trellis module is 23 + 23 + 23 = 24, so that the trellis complexity for this trellis module is 24/2 = 12

edges per bit, the same as given by Eq. (4) for the punctured trellis. To actually construct the trellis

module, we can use the techniques of [25, Section 7], and the result is shown in Fig. 8. Finally, we note

that the G_cah,_ corresponding to the matrix G1 of Eq. (17) is [cf. Eq. (8)]

1 1 1 1 ]- 0

0 0 I 1 0

1 1 1 1 T 0

0 0 1 1 0 T

1 1 1

0 0 1

1 1 0

1 0 T

which has the LR property, and so GI(D) is trellis-minimal. (This code is tile first code listed in Table 2
in the Appendix.)
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o o

"" "--.. I / "" _ I

Fig. 8. The trellis module for the (3,2,2) code with generator matrix
GI(D ). This module is isomorphic to the one in Fig. 5.

As our second example, we consider a partial-unit-memory code, taken from [20,1]. It is an (8, 4, 3)

code with dfree = 8 and with minimal generator matrix (as taken from [1])

11111111 '_ [00000000)

11101000 | / 11011000

G(D) = 10110100] + / 10101100 D

10011010/ \10010110

(18)

The conventional trellis complexity for this code is, by Eq. (1), 8/4.2 r = 256 edges per bit. We can

reduce this number to 120, as follows. First, we concatenate tile two matrices in Eq. (18), obtaining the

following 4 x 16 scalar matrix G:

(1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 00_

(_= _! ! ! 0 ! 0 0 0 1 1 0 1 1 0 0 00)
1 0 1 1 0 1 0 0 1 0 1 0 1 1 0

1 0 0 1 1 0 1 0 1 0 0 1 0 1 1

Next, using the techniques developed in [25, Section 6], we perform a series of elementary row operations

on G, transforming it to the minimal span, or trellis oriented form, G':

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0\

0 0 0 1 0 I 1 1 1 I 0 i I 0 0

0 1 0 0 1 0 i I I 0 1 0 1 1 0

0 0 1 0 1 1 1 0 0 0 1 1 1 0 1

(19)

The matrix module G defined in Eq. (9) is, thus,
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d z

/0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0

1 0 1 0 1 1 0 0

0 0 1 1 1 0 1 0

1 1 1 1 1 1 1 1

0 0 0 1 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 1 OJ

an(l so by Eq. (10) the total edge length of the trellis module is 2 4 + 2 5 q- 2 6 q- 2 7 q- 2 7 q- 2 6 -t-25 + 2 4 = 480.
Since each trellis module represents four encoded bits, it follows that the trellis COml)lexity is 480/4 = 120

edges per bit, compared to the conventiomfl trellis complexity, cited above, of 256 edges per bit.

Tim matrix Gscalar corresponding to the matrix G' in Eq. (19) is easily seen to have the LR property,

and so the generator matrix [cf. Eq. (19)]

(1111111i)(i°°°°°°°/G'(D)= 0 0 0 1 0 1 1 1 0 1 1 0 0 0 D
0 1 0 0 1 0 1 + 0 1 0 1 1 0 0

0 0 1 0 1 1 1 0 1 1 1 0 1 0

is trellis-minimal. However, the trellis complexity can be reduced still further, if we allow column per-

mutations of the original generator matrix G(D) in Eq. (18). Indeed, by comI)uter search, we have fi)und

that one minimal complexity cohmm permutation for this particular code is the permutation (01243567),

which results in the generator matrix [of. Eq. (18)]

11111111

11110000 |
G(D)= 10101100]

10011010/

[ 00000000 '_

/ 11011000 |
+ _ 10110100]

\ 1OO0111O/

D (20)

Then, after putting the minimal generator lnatrix of Eq. (20) into trellis-minimal form, it becomes

11111111\ /'00000000'_
00001111| / 11111000|

(7(D) = 01111111] + _11111100] D (21)
00111111/ \11111110/

The trellis complexity of the generator matrix in Eq. (21) turns out to be 104 edges per encoded bit.

(This code is the seventh code listed in Table 6 in the Appendix.) The minimal trellis complexity of unit

memory and partial unit memory eonvolutional codes has also been studied in [6] and [32].

IV. LTC Versus ACG

In this section, we will attempt to compare the trellis complexity of a number of codes to their perfor-

mance. _lb do tiffs, we define the logarithmic trellis complexity (LTC) of a code, block or convohltional,

as the base-2 logarithm of the minimal trellis complexity (edges per encoded bit) and the asymptotic

coding gain (ACG) as the code's rate times its mininmm (or fi'ee) distance. An empirk:al study, based on

existing tables of convolutional codes (e.g., the tables in [19,28,20,5,7]), reveals the interesting fact that

LTC / ACG lies between 1.5 and 2.0 for most "good" convolutional codes. For example, for the (3, 2, 2, 3)
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code discussed in Section III, the ratio is 1.79, and for the (8, 4, 3, 8) code, it is 1.68. By comparison, for

the "NASA standard" (2, 1, 6, 10) convolutional code, for which, as for all (n, 1, rn) convolutional codes,

the minimal trellis complexity is given by the formula of Eq. (1), the ratio is 1.60. In the Appendix, we

list the (ACG, LTC) pairs for a large number of convolutional codes and a few block codes. In Fig. 9,

we show a scatter plot of these pairs. It is interesting to note how close most of these pairs are to the

line of slope 2. This experimental fact may be related to a recent theorem of Lafourcade and Vardy [18],
which implies that for any sequence of block codes with a fixed rate R > 0 and fixed value of d/n > O, as

ft ---+ OO,

LTC

liminf _-C-_ _> 2 (22)

In any case, we have been able to show that for all codes, the ratio LTC/ACG must be strictly greater

than 1. (This result is similar to Theorem 3 in [17].)

o

.M

L I I I I I I

30 / o CONVOLUTIONAL CODES y

/ x BLOCK CODES .,_

o°
o o o

15 £ o °°

'i
L,-_ I I I I I I
2 4 6 8 10 12 14

ACG

Fig. 9. A scatter plot of the pairs (ACG, LTC) for the codes listed
in the Appendix.

V. Conclusion and Open Problems

In this article, we have shown that every convolutional code has a unique minimal trellis representation,

which is in many cases considerably simpler than the conventional trellis for the code. We have also

presented a simple technique for actually constructing the minimal trellis for any convolutional code,

and we have numerically computed the trellis complexity for many convolutional codes. In principle, the

theory of minimal trellises for convolutional codes can be deduced fl'om the general Forney-Trott theory

[12], but we believe the observation that the Viterbi decoding complexity of many convolutional codes,

including many nonpunctured codes, can thereby be reduced systematically is new, as are the details of

the algorithms for producing the minimal trellises.

We close with a list of research problems that suggest themselves.
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(1) A given convolutional code will, in general, have many different minimal generator ma-

trices [21], but as we saw in Section II, not all minimal generator matrices are trellis

minimal. What can be said about the class of trellis minimal generator matrices?

(2) A theoretical explanation of the experimental observation that most of the codes shown

in Fig. 9 lie near the line of slope 2 would be welcome.

(3) The design and implementation of Viterbi's algorithm on conventional trellises is well

understood. Since the techniques described here lead to greatly reduced trellis complex-

ity, it would be worthwhile to make a careful study of how best to implement Viterbi's

algorithm on minimal trellises.

(4) From our current viewpoint, punctured convolutional codes are just codes whose trellis

module has fewer edges than would normally be expected. Indeed, it is easy to prove

that the minimal trellis complexity of any punctured convolutional code is at least as

small as the punctured trellis complexity given in Eq. (4). This is because in the scalar

matrix G for a punctured code, certain entries are guaranteed to be zero. For example,

for a (4, 3, 3) punctured code, the matrix G has the template structure

( xxxxx0!)C,= Oxzzzx
0 0 x x x x

where the x's can be arbitrary (actually, there are restrictions oll the x's that depend in
detail on how the code is constructed), but the eight zero positions must be respected.

Any (4, 3, 3) convolutional code with such a template structure will have trellis complexity

at most 4/3.24 = 211/3. An obvious question is whether other low complexity templates

support good convolutional codes.

(_) In our computer-aided search for the "best" column permutation of the (8, 4, 3, 8) code,

we found that each of the 8! = 40,326 possible column permutations had minimal trellis

complexity of either 120 or 104. This strongly suggests an equivalence among permu-

tations that, if understood theoretically, could make it much simpler to find the best

column permutation.

Finally, we remark that when the bulk of this article was written, we were not aware of tile important

earlier work of Sidorenko and Zyablov [29], which,deals explicitly with the minimal trellis for a convo-
lutional code, and we wish to acknowledge their priority. Their work, like ours, develops the theory of

minimal trellises for convolutional codes from the corresponding theory for block codes. However, their
trellis construction is based on the parity-check matrix of the code rather than the generator matrix,

and their emphasis is quite different. One advantage of the Sidorenko-Zyablov approach is that it leads

to the following upper bound on the number of nodes at depth i in the minimal trellis for a (n, k, m)

convolutional code [29, Theorem 1]:

Nz __ 2 m+min(k'n-k)

It is not easy to derive this bound using our methods. On the other hand, the present article contains a

number of things not present in [29], among them being
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(1) The observation that the minimal trellis for a punctured convolutional code is at least

as simple as the punctured trellis.

(2) The concept of a trellis-minimal generator matrix for a convolutional code, and an algo-
rithm for computing one.

(3) The ACG versus LTC comparison for block and convolutional codes.
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Appendix

Tables of LTC Versus ACG

In this appendix, we list the ACG and the LTC for a large number of "good" convolutional codes and

a few block codes. A scatter plot of these (ACG, LTC) pairs appears as Fig. 9 in Section IV.

Table 1. Best (2,1,m) codes. _

Code LTC ACG LTC-ACG
ratio

(2,1,2,5) 4 2.5 1.60

(2,1,3,6) 5 3 1.67

(2,1,4,7) 6 3.5 1.71

(2,1,5,8) 7 4 1.75

(2,i,6,10) 8 5 1.60

(2,1,8,12) 10 6 1.67

(2,1,10,14) 12 7 1.71

(2,1,11,15) 13 7.5 1.73

(2,1,12,16) 14 8 1.75

(2,I,14,18) 16 9 1.78

(2,1,15,19) 17 9.5 1.79

(2,1,16,20) 18 10 1.80

(2,1,18,22) 20 11 1.82

(2,1,21,24) 23 12 l.u2

(2,1,23,26) 25 13 1.92

(2,1,25,27) 27 13.5 2.00

(2,1,27,28) 29 14 2.07

(2,1,30,30) 32 15 2.13

a From pp. 85-88 in [7].

137



Table 2. Best (3,2,m) codesP

Code LTC ACG LTC-ACG
ratio

(3,2,2,3) 3.58 2.00 1.79

(3,2,3,4) 5.00 2.67 1.87

(3,2,4,5) 6.00 3.33 1.80

(3,2,5,6) 7.00 4.00 1.75

(3,2,6,7) 8.00 4.67 1.71

(3,2,7,8) 9.00 5.33 1.69

(3,2,8,8) 10.00 5.33 1.88

(3,2,9,9) 11.00 6.00 1.83

(3,2,10,10) 12.00 6.67 1.80

a From p. 90 in [7].

Table 3. Best (4,3,m) codesP

Code LTC ACG LTC ACG
ratio

(4,3,3,4) 5.00 3.00 1.67

(4,3,5,5) 7.00 3.75 1.87

(4,3,6,6) 8.00 4.50 1.78

(4,3,8,7) 10.00 5.25 1.90

(4,3,9,8) 11.00 6.00 1.83

From p. 90 in [7].

Table 4. Best (3,1,m) codes. _

Code LTC ACG LTC-ACG
ratio

(3,1,2,8) 4.58 2.67 1.72

(3,1,3,10) 5.58 3.33 1.68

(3,1,4,12) 6.58 4.00 1.64

(3,1,5,13) 7.58 4.33 1.75

(3,1,6,15) 8.58 5.00 1.72

(3,1,7,16) 9.58 5.33 1.80

(3,1,8,18) 10.58 6.00 1.76

(3,1,9,20) 11.58 6.67 1.74

(3,1,10,22) 12.58 7.33 1.72

(3,1,11,24) 13.58 8.00 1.70

(3, I, 12,24) 14.58 8.00 1.82

(3,1,13,26) 15.58 8.67 1.80

From p. 89 in [7].
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Table5.Best(4,1,m)codes._

Code LTC ACG LTC-ACG
ratio

(4,1,2,10) 5.00 2.50 2.00

(4,1,3,13) 6.00 3.25 1.85

(4,1,4,16) 7.00 4.00 1.75

(4,1,5,18) 8.00 4.50 1.78

(4,1,6,20) 9.00 5.00 1.80

(4,1,7,22) 10.00 5.50 1.82

(4,1,8,24 11.00 6.00 1.83

(4,1,9,27) 12.00 6.75 1.78

(4,1,10,29) 13.00 7.25 1.79

(4,1,11,32) 14.00 8.00 1.75

(4,1,12,33) 15.00 8.25 1.82

(4,1,13,36) 16.00 9.00 1.78

aFrom p. 89 in [7].

Table 6. Some block codes and partial unit memory

convolutional codes.

Code LTC ACG LTC-ACG
rat io

[8,4,4] 3.46 2.00 1.73

Self-dual code

[24,12,8] 8.22 4.00 2.06

Golay code

[32,16,8] 8.64 4.00 2.16
BCH a code

[48,24,12] 15.13 6.00 2.52

Self-dual code

[n, n - 1, 2] 2.00 2(n- 1) ,n n_l

Parity-check code

In, 1, n] 1 + log 2 n 1 1 + log 2 n

Repetition code

(8,4,3,8) 6.70 4.00 1.68

PUM b code

(24,12,7,12) 15.58 6.00 2.60

PUM code

(24,12,10,16) 18.58 8.00 2.32
PUM code

Bose-Chaudhuri-Hocquenghem.

b Partial unit memory.
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This article describes mea_surements made at all three Deep Space Network 70-m

S-band polarization divcrse (SPD) systems to determine and eliminate the cause

of the 1-K elew_tion in follow-up noise temperature in the listen-only mode of the

SPD systems at DSS 43 and DSS 63. The system noise temperatures obtained after

finding and correcting the cause of the elevated follow-up noise temperature are also

reported.

I. Introduction

In response to the Galileo spacecraft's X-band (8.45 GHz) antenna deployment failure, an emergency

effort to optimize S-band (2.3 GHz) downlink performance was conducted. As part of this effort, termed

the Galileo S-band Contingency Mission, the three 70-m DSN S-band polarization diverse (SPD) systems

in the listen-only mode (see Fig. 1) have been carefully evaluated. Results of this initial evaluation were

that both DSS 43 and DSS 63 at the Canberra and Madrid Deep Space Communications Complexes,

respectively, exhibited elevated follow-up noise temperature contributions--defined as the contribution to

system operating noise temperature of all components following the first low-noise amplifier (LNA) of

1.25 K in COlnparison with the predicted values of 0.35 K. The system noise temperature predictions

for these systems are shown in Tables 1 and 2. During the course of the evaluation, DSS-43 persolmel

determined the cause of this elevated follow-up noise temperature contribution in their 70-m SPD system

to be due to a nonstandard configuration. This problem was corrected, and the antenna sul)sequently

performed within predicted performance limits.

The reason tbr the elevated follow-up noise temperature at DSS 63, also determined during the. course

of this work, was a higher than normal attenuation level in the system path behind the maser LNA. Once

this attenuation was reduced by about 4 dB, the measured follow-up noise telnperature at DSS 63 of

0.4 I( agreed very closely with the predicted value of 0.35 K. Also documented during the course of the

investigation were high and dissimilar noise figures of the S-band Block IV receivers at DSS 14, as well

as difl'erences in gain of the right-hand circular polarization (RCP) and left-hand circular polarization

(LCP) channels of the very long baseline interferometry (VLBI) downconverter at DSS 63.
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Fig. 1. The 70-m SPD diverse front-end listen-only mode for DSS 43 and
DSS 63.

II. Noise Measurement Technique

In the course of this investigation, two types of noise measurements made at different points along the

front-end component string were needed to assess where the noise temperature problem was located. The

first measurement is the total system noise temperature, Top, while the antenna is pointed at zenith. The

noise power level is measured using the 50-MHz precision attenuator assembly (PAS) or other suitable

receiver. Switch 2 in Fig. 1 is switched so that the maser LNA is on the sky. Switch 2 is then switched

so that the maser input is on the ambient load. The difference in power levels, Y, the Y-factor in dB, is

then used to determine the Top:

Yload -1- Zrcvr

Top - lOY/lO (1)

where rload iS the ambient load temperature, K, and Trcvr is the maser input noise temperature, K,

including the follow-up noise temperature (FNT) contribution. This approach is extremely, accurate for

T,-cw << TZoad and requires independent knowledge of Tr_v,.

The second measurement required is the FNT. This is accomplished by measuring the difference in

power level in dB, the Y-factor, by using the PAS or other suitable receiver, with the maser switched to
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Table 1. Noise budget for DSS 14. a

Component Part number AT, K L, dB T, K G, dB TiN, K Noise term, K

Cosmic background

Atmosphere

Antenna spillover

Antenna scatter

Main reflector

Subreflector

Main reflector

gap leakage

Feedhorn

Waveguide round

Waveguide round,

15.141 in.

+ rotary joint 1 in.

Rotary joints (2)

Polarizers (1)

Cosine taper

Orthomode, upper

Matched coupler,

40 dB injected =
0.029 K

Elbow, H-plane

S-band passband filter

3-position switch

Elbow, E-plane

Straight, 13 in.

35-dB coupler (loss)

35-dB coupler (injected)

Maser/CCR VSWR b

(not used)

Maser/CCR package

LP filter

10-dB couplers (2)

Cable loss,

1/2 in. spiraline

Maser select box

Cable

Loss

Avantek amplifier

20-dB coupler

Cable

Downconverter Ti,_

r

r

9449420-1

9457310-1

2.7 .... 2.657

1.8 .... 1.772

1.44 .... 1.417

2.3 .... 2.264

0.08 .... 0.079

0.07 .... 0.069

0.1 .... 0.098

m

m

0.003 293 -- -- 0.199

0.0015 293 -- -- 0.100

0.0018 293 -- -- 0.120

9457311-1

9449405-1

9457389-1

9457308-1

9457331-1

m

0.003 293 -- -- 0.200

0.0035 293 -- -- 0.233

0.002 293 -- -- 0.133

0.005 293 -- -- 0.333

0.00345 293 -- -- 0.230

9451160-2 0.0037 293 -- -- 0.247

9430960 -- 0.021 293 -- -- 1.406

9443100-1 -- 0.008 293 -- -- 0.538

9451159-2 -- 0.0037 293 -- -- 0.249

9459426-3 -- 0.003 293 -- -- 0.202

SR8148D -- 0.0065 293 -- -- 0.445

-- -- 35 293 -- -- 0.093

-- 0.00 .... 0.000

m

AN-2200N

-- -- 45 2 2.000

0.1 293 -- -- 0.000

1 293 -- -- 0.002

1.7 293 -- -- 0.006

0.8 293 -- 0.004

0.5 293 -- -- 0.003

0 0 -- -- 0.000

-- -- 25 870 0.071

20 293 -- -- 0.007

1 293 -- -- 0.002

-- -- -- 8881 0.287

Total antenna system noise temperature (referred to input of maser)

Follow-up noise contribution Tf

SPD feedcone, low-noise path, 2295 Mtlz, 90-deg elewttion angle, and clear weather.

b Closed-cycle refrigerator (CCR) voltage standing-wave ratio (VSWR).

15.47

0.382
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Table2.NoisebudgetforDSS43andDSS63.a

Component Part number AT, K L, dB T, K G, dB Ti,_, K Noise term, K

Cosmic background -- 2.7 .... 2.656

Atmosphere -- 1.9 .... 1.869

Antenna spillover -- 1.44 .... 1.416

Antenna scatter -- 2.3 .... 2.262

Main reflector -- 0.08 -- -- -- 0.079

Subreflector -- 0.07 .... 0.069

Main reflector -- 0A .... 0.098

gap leakage

Feedhorn 9449420-1 -- 0.003 293 -- 0.199

Waveguide round 9457310-1 -- 0.0015 293 -- 0.100

Rotary joints (3) 9457311-1 -- 0.0045 293 -- -- 0.299

Polarizers (2) 9449405-1 -- 0.007 293 -- -- 0.466

Cosine taper 9457389-1 -- 0.002 293 -- -- 0.133

Orthomode, upper 9457308-1 -- 0.005 293 -- 0.333

Matching section, 9457331-1 -- 0.003 293 -- -- 0.200

upper

Elbow, H-plane 9451160-2 -- 0.0037 293 -- 0.247

S-band passband filter 9430960 -- 0.021 293 -- 1.406

3-position switch 9443100-1 -- 0.008 293 -- -- 0.538

Elbow, E-plane 9451159-2 -- 0.0037 293 -- -- 0.249

Straight, 13 m. 9459426-3 -- 0.003 293 -- -- 0.202

35-dB coupler (loss) SR8148D -- 0.0066 293 -- -- 0.445

35-dB coupler (injected) -- -- 35 293 -- -- 0.093

Maser/CCR b package -- -- -- 45 2 2.000

LP filter -- -- 0.1 293 -- 0.000

10-dB couplers (2) -- 1 293 -- -- 0.002

Cable loss, -- -- 1.7 293 -- 0.006

1/2 in. spiraline

Maser select box -- -- 0.8 293 -- -- 0.004

Cable -- 0.5 293 -- -- 0.003

Avantek amplifier AN-2200N -- -- -- 25 870 0.071

20-dB coupler -- -- 20 293 -- -- 0.007

Cable -- -- 1 293 -- -- 0.002

Dowuconverter ri,_ ..... 8881 0.287

Total antenna system noise temperature (referred to input of maser)

Follow-up noise contribution Tf

15.74

0.382

a SPD feedcone, low-noise path, 2295 MHz, 90-deg elevation angle, and clear weather.

b Closed-cycle refrigerator.
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the ambient load while switching the maser pump source on and off. The Y-factor, Y, is then used to
determine the FNT:

FNT- Tlo_d (2)
10Y/10

where Zload is the ambient load temperature, K, and the difference in power level between the maser

pump on and off is Y, dB.

III. Preliminary Investigation and Baseline Data

A noise budget was prepared for the DSS-14, DSS-43, and DSS-63 SPD systems in the listen-only

mode. These noise budgets used our best estimates of microwave performance for each component in

the system. Some measured data were available; other figures are theoretical. Measurements made at

the stations were compared with these noise budget predictions. While the DSS-14 SPD system noise

temperature agreed closely with its noise budget, those at DSS 43 and DSS 63 did not agree with predicted

performance. Further FNT measurements isolated the problem at DSS 43 and DSS 63 to that part of

the SPD system following the maser. This was determined after comparing the over-l-K FNT measured
at both stations to the 0.4-K predicted noise. Since DSS 14 was the only station that closely agreed with

predictions, and since it was the most readily available SPD system, it was carefully evaluated and used

as a baseline against which to compare the other two stations.

A Top measurenmnt made at DSS 14 using the PAS yielded the data shown in row 1 of Table 3.

A similar _/ov measurement was made at the immediate output of the maser using the JPL total power

radiometer (TPR); this yielded the data in row 2. The Top measured at the input to the multiport coupler

assembly (MPCA) is shown in row 3. All FNT measurelnent made using the PAS gave the data in row 4,
while an FNT measurement made using the JPL TPR is shown ill row 5. Next, the Block IV receivers'

noise pertbrlnances were checked using a Hewlett Packard (HP) 8970B noise figure meter. The resulting

noise figure (NF) and gain information obtained at 2295 MHz is displayed in row 6 for receiver 1 and
row 7 for receiver 2.

The high noise figures and the difference in noise figures, 21.4 dB for receiver 1 and 17.3 dB for

receiver 2, of the Block IV receivers were noted. This poor performance results in the Top being more

than 0.5-K above what good engineering practice should provide. A further explanation of the problem

and a proposed solution appear in the recommendations section.

Table 3. Measurement data for DSS 14.

Data no., Y, dB Load, deg C Trcvr, K Top, K FNT, K NF, dB Gain, dB
type

1, PAS 12.88 18 2.5 15.1 -- --

2, TPR 13.05 18 2.5 14.5 ....

3, MPCA 13.05 18 2.5 14.5 ---

4, PAS 25 18 -- 0.92 -

5, TPR 35 18 -- 0.04 -

-- 21.4 336, Receiver 1 -- --

-- 17.3 337, Receiver 2 ....
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IV. DSS-43 Measurements

Measurements made at DSS 43 at the start of this investigation gave system noise temperature values

of 17.2 K. Measurements made later on in the course of the investigation by station personnel at DSS 43

using the 50-MHz PAS resulted in the data in rows 1 and 3 of Table 4. These data were reduced by

station personnel and, therefore, the raw data are unavailable. Measurements made at DSS 43 using the
JPL TPR yielded the data in rows 2 and 4.

Station personnel explained the difference in measurements before and after evaluation activities as

follows: At DSS 43, there never was a problem with the actual system noise temperature, and the precision

power monitor method of measurement was reporting the correct result. The station chose to publish a
determination of the system noise temperature based on a Y-factor detector result. This result was in

error because of a nonstandard configuration of the Y-factor detector assembly. The station corrected

this and confirmed that results from the three different methods 1 of measuring system noise temperature

at the station agreed within 0.5 K.

Table4. Measurement datafor DSS 43.

Data no., Y, dB Load, deg C Trcvr, K Top, K FNT, K NF, dB Gain, dB
type

1, PAS -- -- -- 14.7 -- -- --

2, TPR 13.06 18.8 2.5 14.7 -- -- --

3, PAS .... 0.4 N/A N/A

4, TPR 39.23 19 -- -- 0.039 N/A N/A

V. DSS-63 Measurements

Tile system operating noise temperature, Top, of the SPD system at DSS 63 was measured using three
methods: Row 1 of Table 5 shows the measurement result using the 50-MHz PAS; row 2 shows the results

using the JPL TPR at the output of the maser LNA; and row 3 shows the results using the JPL TPR at

the input to the multiport coupler assembly. An FNT measurement made using the PAS gave the data in

row 4, and an FNT measurement made using the JPL TPR is shown in row 5. The input noise figure of

the Block IV receivers was measured using an HP 8970B noise figure meter, and the resulting noise figure
and gain information obtained at 2295 MHz is displayed in row 6 for receiver 1 and row 7 for receiver 2.

_r'h,_ VT l_T ,4 ............. t-,_,- ;..... t- n_i_o G_,,ro nnc] cr_in for the RCP and LCP channels were measured usin_

an automated test setup developed at JPL. These data are shown in Fig. 2, which compares the noise

figures of the two channels, and Fig. 3, which compares the gains.

Included in earlier measurements were data taken of waveguide (WG) components on the ground using

tile S band test horn, the TPR, and a Block IV S-band maser that was brought from JPL. These tests

were inconclusive due to the interaction of the WG components; that is, the WG components must be

tested as a system and not independently in order to obtain accurate results.

Plotting system noise temperature and ambient load temperature as a function of time (Fig. 4) revealed

that the highest noise temperatures were occurring at the warmest load temperatures (i.e., the warmest

time of the day). This was determined to be due to inadequate air conditioning in the cone, which was

causing elevated physical temperatures of the WG components. The air conditioning was improved by
station personnel to bring the SPD cone physical temperature down so that it more closely matched

DSS 14 and DSS 43; this improved the stability of the system noise temperature over time.

1 The third method uses the open-loop VLBI/radio science downconverter output and a quality spectrum analyzer for the

Y-factor measurement.
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Table5.MeasurementdataforDSS63.

Data no., Y, dB Load, deg C Trcvr, K Top, K FNT, K NF, dB Gain, dB
type

1, PAS 12.54 24 4.5 16.8 -- -- --

2, TPR 12.8 27.5 4.5 16.0 -- -- --

3, MPCA 12.5 27 4.5 17.1 -- -- --

4, PAS 23.8 25.5 -- -- 1.25 -- --

5, TPR 39 27 -- -- 0.04 -- --

-- -- -- 15.7 276, Receiver 1 -- --

-- -- -- 15.9 307, Receiver 2
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VI. Conclusions

The result of the evaluation was an overall improvement of the S-band polarization diverse systems

at all stations except DSS 14. DSS 14 showed a measurable increase in system noise temperature per-
formance; this is most likely due to an elevated noise temperature in the S-band Block IV receivers at

the station. Pre-evaluation results showed a Top of 14.7 K, 17.2 K, and 17.6 K at DSS 14, DSS 43, and

DSS 63, respectively. Postevaluation results showed a Top of 15.15 K, 14.7 K, and 15.5 K at DSS 14,
DSS 43, and DSS 63, respectively.

This task was successful in achieving its goals. The data taken and the equipment and procedures
developed will assist in future investigations of station system noise temperatures.

VII. Recommendations

It is recommended that tolerances be established for the 70-m SPD system Top and FNT contributions

at the stations. When an out-of-tolerance Top is measured, the FNT and linearity should be checked,
.... A +.... _.1_1._;._ _,h,.,,1A I...... cl tn iclontify the problem. This could and should include use of the

HP 8970B noise figure meter with an HP 346-type noise source for the purpose of noise figure and gain

measurements of station equipment behind the LNA.

The Stelzried spreadsheet for checking Y-factor linearity should be implemented at all DSN stations.

± lie stations should also llave bile C_tlJetu,n_y of measuring _'_ r NTAnr, i_o temperature on tho ?oraund and
at the output of the LNA in the cone, using the same system the JPL Microwave Electronics Group

uses--a calibrated horn (for ground tests), absorber load, and the JPL total power radiometer.

The attenuators and strip chart recorders should be replaced with a precision power meter or spectrum

analyzer capable of measuring Y-factor power ratios at 50 MHz with an accuracy of +0.01 dB.

The Top of the 70-m SPD systems can be reduced an additional 0.3 K by reducing the follow-up noise

temperature contribution by a factor of 10, fi'om 0.4 to <0.04 K. This can be achieved by replacing the

existing S-band follow-up amplifier with a state-of-the-art amplifier, installing this postamplifier in front
of any losses between the LNA and the downconverter, and replacing the downconverters at the stations

with state-of-the-art downconverters having noise figures of 5 dB or less.
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The RCP channel of the VLBI downconverter at DSS 63 should be investigated. It has 14-dB less gain

than the LCP channel. The fact that the RCP channel has a very similar noise figure when compared

with the LCP channel indicates that this problem is in the output of the downconverter.

Finally, the two S-band Block IV downconverters at DSS 14 exhibit elevated noise temperatures. This

is most likely due to an elevated loss in either the preselector filter or the mixer and should be investigated
and corrected.
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